摘要
考虑具有p-Laplacian算子的delta-nabla分数阶差分方程边值问题:■其中b∈Z+,T=[α-β-1,b+α-β-1]Να-β-1, 1≤α,β≤2, 3<α+β≤4, 0<ω<1,λ∈(0,+∞),Δ■和b?α分别是左右分数阶差分算子,并且■.利用上下解方法和Schauder不动点定理,得到了上述边值问题正解的存在性.
Consider the boundary value problem of delta-nabla fractional difference equations with p-Laplacian operator: ■ Where b∈Z+, T=[α-β-1,b+α-β-1]Να-β-1, 1≤α,β≤2, 3<α+β≤4, 0<ω<1, λ∈(0,+∞), Δ■, b?α are left and right fractional difference operator, and ■. By using the upper and lower solution method and the Schauder fixed point theorem, the existence of the positive solution of the above boundary value problem is obtained.
作者
董强
侯成敏
DONG Qiang;HOU Chengmin(College of Science,Yanbian University,Yanji 133002,China)
出处
《延边大学学报(自然科学版)》
CAS
2019年第4期283-291,369,共10页
Journal of Yanbian University(Natural Science Edition)