期刊文献+

Boosting High-Rate Zinc-Storage Performance by the Rational Design of Mn_(2)O_(3) Nanoporous Architecture Cathode 被引量:2

下载PDF
导出
摘要 Manganese oxides are regarded as one of the most promising cathode materials in rechargeable aqueous Zn-ion batteries(ZIBs)because of the low price and high security.However,the practical application of Mn2O3 in ZIBs is still plagued by the low specific capacity and poor rate capability.Herein,highly crystalline Mn2O3 materials with interconnected mesostructures and controllable pore sizes are obtained via a ligand-assisted self-assembly process and used as high-performance electrode materials for reversible aqueous ZIBs.The coordination degree between Mn2+and citric acid ligand plays a crucial role in the formation of the mesostructure,and the pore sizes can be easily tuned from 3.2 to 7.3 nm.Ascribed to the unique feature of nanoporous architectures,excellent zinc-storage performance can be achieved in ZIBs during charge/discharge processes.The Mn2O3 electrode exhibits high reversible capacity(233 mAh g−1 at 0.3 A g−1),superior rate capability(162 mAh g−1 retains at 3.08 A g−1)and remarkable cycling durability over 3000 cycles at a high current rate of 3.08 A g−1.Moreover,the corresponding electrode reaction mechanism is studied in depth according to a series of analytical methods.These results suggest that rational design of the nanoporous architecture for electrode materials can effectively improve the battery performance. Manganese oxides are regarded as one of the most promising cathode materials in rechargeable aqueous Zn-ion batteries(ZIB s) because of the low price and high security.However,the practical application of Mn2 O3 in ZIBS is still plagued by the low specific capacity and poor rate capability.Herein,highly crystalline Mn2 O3 materials with interconnected mesostructures and controllable pore sizes are obtained via a ligand-assisted self-assembly process and used as high-performance electrode materials for reversible aqueous ZIBs.The coordination degree between Mn2+ and citric acid ligand plays a crucial role in the formation of the mesostructure,and the pore sizes can be easily tuned from 3.2 to 7.3 nm.Ascribed to the unique feature of nanoporous architectures,excellent zinc-storage performance can be achieved in ZIBs during charge/discharge processes.The Mn2 O3 electrode exhibits high reversible capacity(233 mAh g-1 at 0.3 A g-1),superior rate capability(162 mAh g-1 retains at 3.08 A g-1) and remarkable cycling durability over 3000 cycles at a high current rate of 3.08 A g-1.Moreover,the corresponding electrode reaction mechanism is studied in depth according to a series of analytical methods.These results suggest that rational design of the nanoporous architecture for electrode materials can effectively improve the battery performance.
出处 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第1期195-207,共13页 纳微快报(英文版)
基金 the Young Thousand Talented Program and the National Natural Science Foundation of China (21671073 and 21621001) the “111” Project of the Ministry of Education of China (B17020) Program for JLU Science and Technology Innovative Research Team
  • 相关文献

同被引文献11

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部