期刊文献+

固体推进剂药浆收缩流动数值模拟与实验验证 被引量:2

Numerical Simulation and Experiment of Solid Propellant 4∶1 Contraction Flow
下载PDF
导出
摘要 利用Phan Thien-Tanner(PTT)黏弹本构模型,通过CFD黏弹性流体软件Ansys-Polyflow对固体推进剂药浆4∶1收缩流进行数值仿真模拟,研究了固体推进剂药浆在不同松弛时间,流道收缩口处的等值线流体形态、流动速度、法向应力效应等特性。研究表明,随着松弛时间延长,流体的韦森堡效应逐渐增大,在收缩流道入口的角落处产生涡流或二次流现象越明显;在收缩流道入口处,由于流动面积减小,为保证流体质量守恒,流体沿着中心轴流动方向加速,且速度梯度方向与流体的流动方向一致,即中心轴处产生了大应变速率的拉伸流动,远离中心轴靠近壁面处流动以剪切流动为主。 The Phan Thien-Tanner(PTT)viscoelastic constitutive model was used to simulate the solid propellant 4∶1 contraction flow by CFD viscoelastic fluid software Ansys-Polyflow.The fluid streamline form,flow velocity and normal stress effect of the solid propellant slurry at the contraction port of the channel were studied under different relaxation time.Studies have shown that as the relaxation time increases,the Weissenberg effect of the fluid gradually increases,and the phenomenon of eddy currents at the corner of the contraction port is more obvious.At the entrance of the contraction channel,as the flow area is reduced,the fluid accelerates along the direction of the central axis to ensure fluid quality conservation,and the velocity gradient direction is consistent with the flow direction of the fluid at the central axis,where an extensional flow with a large strain rate is generated.The flow away from the central axis and near the wall is dominated by shear flow.
作者 乌岳 李卓 Yue Wu;Zhuo Li(College of Chemical Engineering,Inner Mongolia University of Technology;College of Science,Inner Mongolia University of Technology,Hohhot 010051,China)
出处 《高分子材料科学与工程》 EI CAS CSCD 北大核心 2019年第12期99-105,共7页 Polymer Materials Science & Engineering
基金 2019内蒙古自然科学基金资资助项目(2019MS01018) 内蒙古自治区研究生科研创新项目(B2018111930) 中国航天科工集团第六研究院院管课题(GK201812)
关键词 固体推进剂药浆 收缩流动 涡流 拉伸流 剪切流 solid propellant slurry contraction flow eddy currents extensional flow shear flow
  • 相关文献

参考文献3

二级参考文献25

  • 1周持兴.MODELING THE CHAIN CONFORMATION OF POLYMER MELTS IN CONTRACTION FLOW[J].Chinese Journal of Polymer Science,2003,21(1):35-43. 被引量:1
  • 2Martyn M T, Nakason C, Coates P D. Flow visualisation of polymer melts in abrupt contraction extrusion dies: quantification of melt recirculation and flow patterns[J]. J Non-Newton Fluid Mech, 2000, 91 (2/3): 109-122.
  • 3Carrot C, Guillet J, Fulch entrance pressure drops, and calculated values [J] 2 095-2 107. ron R. Converging flow analysis, and vortex sizes: Measurements Polym. Eng. Sci., 2001, 41 (12):
  • 4Feigl K, Tanner F, Edwards B J, et al. A numerical study of the measurement of elongational viscosity of polymeric fluids in a semihyperbolically converging die[J]. J NonNewton Fluid Mech, 2003, 115 (2/3): 191-215.
  • 5Jeong JH, Leonov AI. A quasi-1D model for fast contraction flows of polymer melts[J]. J Non-Newton Fluid Mech, 2004, 118 (2/3): 157-173.
  • 6Liang J.Z.. Estimation of vortical region length of rubber compound during entry flow[J]. Plast. Rubber Compos. Process. Appl., 1996, 25: 495-498.
  • 7Liang J. Z.. Planar entry converging flow during extrusion of polymer melts[J]. Polymer-Plastics Technol. Eng, 2007, 46(5): 475-480.
  • 8Liang J.Z. Quantitative characterization of viscoelastic properties and their relationship during extrusion flow of polymeric melts[J]. Polymer-Plastics Technol, Eng., 2006,45(3): 329-334.
  • 9Liang J.Z.. Determination of the entry region length of viscoelastic fluid flow in a channel[J]. Chem. Eng. Sci., 1998,53(17): 3 185-3 187.
  • 10Liang J.Z. Estimation of entry natural converging angles during capillary extrusion flow of carbon black filled NR/SBR compound[J]. Polym. Test.,2005,24(4): 435-438.

共引文献4

同被引文献29

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部