期刊文献+

SiC nanowire-based SU-8 with enhanced mechanical properties for MEMS structural layer design

SiC nanowire-based SU-8 with enhanced mechanical properties for MEMS structural layer design
下载PDF
导出
摘要 In addition to being used for pattern transfer,the negative photoresist SU-8 iswidely used as a structural material in microelectromechanical systems(MEMS).Due to its good photopatternability,SU-8 has lower manufacturing costs than many other materials,but its mechanical properties are relatively weak to some extent,which limits its performance.The mechanical properties of epoxy-like SU-8 can be enhanced by addingmicro-or nano-fillers such as carbon nanotube,clay,and SiC nanowire,which have superior elastic modulus.In this study,SiC nanowires were used to improve the mechanical properties of SU-8 while the SU-8 retains its photopatternability.The SiC nanowires were uniformly dispersed in SU-8 by stirring and ultrasonication.SU-8 materials with different SiC nanowire contents were fabricated into dog bone samples by lithography.The elastic modulus,storage modulus,and damping factor of the samples were measured by the Dynamic mechanical analysis(DMA)Q800.The experiment result shows that the rigidity and toughness increased,and the damping reduced.The 2 wt%SiC nanowires-reinforced SU-8 had a 73.88%increase in elastic modulus and a 103.4%increase in elongation at break.Furthermore,a spring component made by SiC-doped SU-8 could withstand greater acceleration.The SiC nanowires-reinforced SU-8 has the potential tomeet higher requirements in the design andmanufacture of MEMS and greatly reduce the manufacturing costs of MEMS devices. In addition to being used for pattern transfer, the negative photoresist SU-8 is widely used as a structural material in microelectromechanical systems(MEMS). Due to its good photopatternability, SU-8 has lower manufacturing costs than many other materials, but its mechanical properties are relatively weak to some extent, which limits its performance. The mechanical properties of epoxy-like SU-8 can be enhanced by adding micro-or nano-fillers such as carbon nanotube, clay, and SiC nanowire, which have superior elastic modulus. In this study, SiC nanowires were used to improve the mechanical properties of SU-8 while the SU-8 retains its photopatternability.The SiC nanowires were uniformly dispersed in SU-8 by stirring and ultrasonication. SU-8 materials with different SiC nanowire contents were fabricated into dog bone samples by lithography. The elastic modulus, storage modulus, and damping factor of the samples were measured by the Dynamic mechanical analysis(DMA)Q800. The experiment result shows that the rigidity and toughness increased, and the damping reduced. The2 wt% SiC nanowires-reinforced SU-8 had a 73.88% increase in elastic modulus and a 103.4% increase in elongation at break. Furthermore, a spring component made by SiC-doped SU-8 could withstand greater acceleration.The SiC nanowires-reinforced SU-8 has the potential to meet higher requirements in the design and manufacture of MEMS and greatly reduce the manufacturing costs of MEMS devices.
出处 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2019年第4期169-176,共8页 纳米技术与精密工程(英文)
基金 supports from the Shanghai Professional Technical Service Platform for Non-Silicon Micro-Nano Integrated Manufacturing Project funded by China Postdoctoral Science Foundation (No. 2018M630440)
关键词 SU-8 SiC nanowires Elastic modulus Dynamic mechanical analysis(DMA) SU-8 SiC nanowires Elastic modulus Dynamic mechanical analysis(DMA)
  • 相关文献

参考文献1

二级参考文献3

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部