期刊文献+

基于深度学习方法的精神分裂症听觉稳态诱发电位分析

Auditory Steady State Responses of Schizophrenia Based On Deep Learning Algorithm
下载PDF
导出
摘要 目的文本旨在使用深度学习方法对精神分裂症建立自动分类模型,为临床上精神分裂症患者的鉴别诊断提供参考。方法通过提取受试听觉稳态诱发电位的能量、相位、信噪比和微分熵作为模型输入特征,使用准确率、灵敏度、特异度和受试工作者特性曲线对深度信念网络和支持向量机构建的模型进行分析和比较。结果深度信念网络模型的准确率、灵敏度、特异度、曲线下面积分别为85.6%、88.33%、75.50%和0.88。深度信念网络模型诊断能力明显高于基于线性核、径向基函数核、sigmoid核的三种支持向量机模型。结论基于深度信念网络算法的诊断模型可以有效协助临床医生对于精神分裂症患者的诊断,达到早期发现疾病的效果。 Objective To establish an automatic classi fication model for schizophrenia using deep learning method, and to provide a reference for the diagnosis of schizophrenia in clinical practice. Methods We extracted the energy, phase, signal-to-noise ratio and differential entropy of auditory steady state responses as input features of models and compared the performance of deep belief networks (DBNs) and support vector machines (SVM) using accuracy, sensitivity, speci ficity and receiver operating characteristic curve. Results The accuracy, sensitivity, specificity and area under the curve of DBNs model were 85.6%, 88.33%, 75.50% and 0.88, respectively. The diagnostic capacity of DBNs model was significantly higher than that of three kinds of SVM models based on linear kernel, radial basis function kernel and sigmoid kernel. Conclusion The diagnostic model based on DBNs can effectively assist clinicians in the diagnosis of patients with schizophrenia and achieve the early detection of disease.
作者 许飞飞 应俊 张立宁 宋亚男 谢惠敏 陈广飞 Feifei;YING Jun;ZHANG Lining;SONG Yanan;XIE Huimin;CHEN Guangfei(Department of Biomedical Engineering,Chinese PLA General Hospital,Beijing 100853,China;Department of Medical Big Data,Chinese PLA General Hospital,Beijing 100853,China;Department of Rehabilitation,Chinese PLA General Hospital,Beijing 100853,China)
出处 《中国医疗设备》 2020年第1期18-22,共5页 China Medical Devices
基金 解放军总医院临床科研扶持基金(2017FC-TSYS-3028)
关键词 精神分裂症 听觉稳态诱发 支持向量机 深度信念网络 schizophrenia auditory steady state responses support vector machines deep belief networks
  • 相关文献

参考文献3

二级参考文献12

  • 1王蔚,张胜,宁新宝,王俊,李乐加.精神分裂症患者脑电信号多重分形的异常[J].中国生物医学工程学报,2004,23(6):511-515. 被引量:2
  • 2VAPNIK VN. The Nature of Statistical Learning Theory[Z]. NY:Springer-Verlag, 1995.
  • 3VAPNIK VN . An overview of statistical Learning Theory [ J ] .IEEE Trans. Neural Network, 1999, 10(5):988-999.
  • 4CRISTIANINI N, TAYLOR JS. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods [ M]. New York: Cambridge University Press , 2000.
  • 5LIN SL, TSAI Y J, LIOU CY. Conscious mental tasks and the EEG signals[ J] . Medical &Biological Engineering &computing, 1993,31:421 -425.
  • 6KEERTHI S, LIN C-J. Asymptotic Behavior of Support Vector Machines with Gaussian Kernel [ J]. Nerual Computation, 2003, 15:1667 - 1689.
  • 7BLANCO S, DPATTELLIS C, ISAACSON S, et al. Time-Frequency Analysis of Electroenc ephalograms series(Ⅱ) : Gabor and Wavelet Transforms[J]. Physical Review E, 1996, 54(6) :6661 -6672.
  • 8HAMID EY, MARDIANA R, KAWASAKI ZI. Method for RMS and power measurements based on the wavelet packet transform[ J].IEEE proceedings-Science, Measurement and Technology, 2002,149(2) :60 -66.
  • 9卢增祥,李衍达.交互支持向量机学习算法及其应用[J].清华大学学报(自然科学版),1999,39(7):93-97. 被引量:41
  • 10张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2278

共引文献2294

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部