摘要
RGB-T目标跟踪是基于RGB目标跟踪问题发展而来的.为了提高复杂环境下的目标跟踪性能,学者们提出结合可见光和热红外的信息来克服单一成像受限的问题.本文首先介绍了RGB-T目标跟踪的研究背景,并指出该任务所面临的挑战,然后归纳并介绍了目前已有的RGB-T目标跟踪的几类方法,包括传统方法和深度学习方法.最后,本文对现有的RGB-T数据集、评价指标进行了分析和对比,并指出RGB-T跟踪中值得研究的方面.
RGB-Thermal object tracking has developed due to its strongly complementary benefits of thermal information to visible data.In this paper,we introduce the research background of RGB-T object tracking and the challenges in this task;then summarize and introduce the existing methods of RGB-T object tracking,including traditional methods and deep learning methods.Finally,we analyze and compare the existing RGB-T datasets and evaluation criteria,and point out the aspects worthy of study in RGB-T object tracking.
作者
丁正彤
徐磊
张研
李飘扬
李阳阳
罗斌
涂铮铮
DING Zhengtong;XU Lei;ZHANG Yan;LI Piaoyang;LI Yangyang;LUO Bin;TU Zhengzheng(School of Computer Science and Technology,Anhui University,Hefei 230601)
出处
《南京信息工程大学学报(自然科学版)》
CAS
2019年第6期690-697,共8页
Journal of Nanjing University of Information Science & Technology(Natural Science Edition)
基金
国家自然科学基金(61602006)