期刊文献+

基于模糊熵的GLLE熵阈值分割方法 被引量:4

GLLE entropic threshold segmentation based on fuzzy entropy
下载PDF
导出
摘要 图像分割是计算机视觉中基础且重要的一个问题.熵阈值图像分割作为一种有效的分割方法,被广泛应用于模式识别和图像处理中.传统的图像分割方法并不能获得足够有效的图像特征.为解决这个问题且进一步探究熵阈值在图像分割中的应用,引入一种GLLE(Gray Level and Local Entropy)二维直方图改进熵阈值图像分割模型,并提出了基于模糊熵的方法计算所建立的二维直方图模型.通过标准实验数据集上的对比实验表明,基于模糊熵的GLLE熵阈值分割方法可以得到更加准确的阈值,提高了分割精度.同时在处理不同类型图像的表现上优于往常的算法,具有更强的鲁棒性. Image segmentation is a basic and important issue in field of computer vision.Entropy threshold image segmentation,as an effective segmentation method,is widely used in pattern recognition and image processing.Traditional image segmentation methods cannot obtain enough effective image features.In order to solve this problem and further explore the application of entropy threshold in image segmentation,a GLLE(Gray Level and Local Entropy)two-dimensional histogram is introduced to improve the entropy threshold image segmentation model,and a method based on fuzzy entropy is proposed to calculate the established two-dimensional histogram model.The comparison experiments on standard experimental datasets show that the proposed GLLE entropy threshold segmentation method based on fuzzy entropy can get more accurate thresholds and improve the segmentation accuracy.Compared with traditional algorithms,our method performs better on different types of images,and has stronger robustness.
作者 何春明 许磊 卢国胜 邓丽珍 HE Chunming;XU Lei;LU Guosheng;DENG Lizhen(Bell Honors School,Nanjing University of Posts and Telecommunications,Nanjing 210023;School of Optoelectronic Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210023;College of Telecommunications and Information Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210003)
出处 《南京信息工程大学学报(自然科学版)》 CAS 2019年第6期757-763,共7页 Journal of Nanjing University of Information Science & Technology(Natural Science Edition)
基金 国家自然科学基金(61701259)
关键词 图像分割 熵阈值 灰度局部熵 二维直方图 模糊熵 image segmentation entropic threshold gray level and local entropy(GLLE) 2-D histogram fuzzy entropy
  • 相关文献

参考文献2

二级参考文献11

共引文献3

同被引文献20

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部