期刊文献+

改进蚁群算法的路径规划研究 被引量:3

Study on path planning of improved ant colony algorithm
下载PDF
导出
摘要 针对蚁群算法在复杂环境下收敛速度慢且存在停滞问题,提出一种改进的蚁群算法。为了避免蚁群陷入死锁状态,采用回退策略,避免蚂蚁盲目搜索产生大量交叉路径并有效减少蚂蚁死亡数量,并且借鉴了狼群分配策略来更新信息素,提高算法全局性,在状态转移概率中引入一个启发因子并进行调整,避免算法陷入停滞。仿真实验结果表明,改进后的蚁群算法收敛速度明显加快,寻优最短路径达到29.73,迭代次数较少28。验证了该算法的有效性和可行性。 Aiming at the problem of slow convergence speed and stagnation of ant colony algorithm in complex environment,An improved ant colony algorithm is proposed.To avoid the colony getting stuck in a deadlock,Use a fallback strategy,Avoid ant blind search to produce a large number of cross paths and effectively reduce the number of ant deaths,In addition,we also use the Wolf pack allocation strategy to update the pheromone and improve the overall performance of the algorithm.An heuristic factor is introduced into the state transition probability and adjusted to avoid the stagnation of the algorithm,The optimal shortest path reaches 29.73,and the number of iterations is less than 28.Simulation results show that the convergence speed of the improved ant colony algorithm is obviously accelerated,which verifies the effectiveness and feasibility of the algorithm.
作者 李海彬 沈显庆 Li Haibin;Shen Xianqing(Heilongjiang university of science and technology School of electrical and control,Harbin Heilongjiang,150000)
出处 《电子测试》 2020年第3期38-39,87,共3页 Electronic Test
关键词 死锁 路径规划 回退策略 改进蚁群算法 deadlock path planning the fallback strategy improved ant colony algorithm
  • 相关文献

参考文献3

二级参考文献24

  • 1戴博,肖晓明,蔡自兴.移动机器人路径规划技术的研究现状与展望[J].控制工程,2005,12(3):198-202. 被引量:75
  • 2朱明华,王霄,蔡兰.机器人路径规划方法的研究进展与趋势[J].机床与液压,2006,34(3):5-8. 被引量:13
  • 3蔡健荣,赵杰文,Thomas Rath,Macco Kawollek.水果收获机器人避障路径规划[J].农业机械学报,2007,38(3):102-105. 被引量:43
  • 4Khatib O. Real - time obstacle avoidance for manipulators and mobile robots [ J ]. The International Journal of Robotics Research, 1986,5 ( 1 ) :90 -98.
  • 5Lozano - P6rez T, Wesley M A. An algorithm for planning collision- free paths among polyhedral obstacles [ J]. Com- munications of the ACM, 1979,22 (10) :560- 570.
  • 6Mansor M A, Morris A S. Path planning in unknown environ- merit with obstacles using virtual window [ J ]. Journal of In- telligent and Robotic Systems, 1999,24 ( 3 ) : 235 - 251.
  • 7Simon D. The application of neural networks to optimal robot trajectory planning [J]. Robotics and Autonomous Systems, 1993,11(1) :23 -34.
  • 8Holland J H. Genetic algorithms and the optimal allocation of trials [J]. SIAM Journal on Computing,1973,2(2) :88 - 105.
  • 9Kennedy J. Particle swarm optimization encyclopedia of ma- chine learning [ M ]. US : Springer,2010.
  • 10Hsu C C, Hou R Y, Wang W Y. Path planning for mobile ro- bots based on improved ant colony optimization [ C ]. IEEE International Conference on Systems, Man and Cybernetics (SMC),IEEE,2013.

共引文献101

同被引文献29

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部