期刊文献+

基于VMD和GP的短期风电功率置信区间预测 被引量:10

Confidence interval prediction of short-term wind power based on VMD and GP
下载PDF
导出
摘要 传统风电点预测算法无法对风机出力的不确定性、随机性、波动性做出定量描述,提出一种基于变分模态分解(VMD)和高斯过程(GP)的区间预测方法,其意义在于能预测一定置信度下的短期风电功率波动区间。该方法利用变分模态分解算法将风功率序列分解为一系列不同带宽的模态分量以降低其非线性,对全部子模态分别建立高斯过程模型,最后叠加每个子模态预测结果得到风功率的置信区间。算例结果表明,与其他常规分解算法相比,该组合模型可以有效提高预测精度和预测区间覆盖率,减小预测区间宽度,具有一定的实用价值。 The conventional short-term wind power confidence interval prediction method based on variational mode decomposition(VMD) and Gaussian process(GP) is proposed to describe the randomness,fluctuation and uncertainty of wind power. Firstly,the wind power sequence is decomposed into a series of modes with different bandwidths to reduce its nonlinearity by using the variational mode decomposition algorithm(VMD). Then,the Gaussian process regression model is established for all the sub-modes. Finally,the prediction results of each sub-mode are added to obtain the forecasting confidence interval of wind power. The results of the example show that compared with other conventional decomposition method,this combined model can effectively improve the prediction accuracy and prediction interval coverage,and reduce the prediction interval width,which has certain practical value.
作者 涂智福 丁坚勇 周凯 Tu Zhifu;Ding Jianyong;Zhou Kai(School of Electrical Engineering and Automation,Wuhan University,Wuhan 430072,China)
出处 《电测与仪表》 北大核心 2020年第1期84-88,共5页 Electrical Measurement & Instrumentation
关键词 风电 置信区间预测 变分模态分解 高斯过程 wind power confidence interval prediction variational mode decomposition Gauss process
  • 相关文献

参考文献11

二级参考文献198

  • 1杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5. 被引量:584
  • 2尹成群,康丽峰,李丽,王红云.基于小波变换和混合神经网络的短期负荷预测[J].电力自动化设备,2007,27(5):40-44. 被引量:19
  • 3苏国韶,燕柳斌,张小飞,江权.基坑位移时间序列预测的高斯过程方法[J].广西大学学报(自然科学版),2007,32(2):223-226. 被引量:24
  • 4陈昊.基于广义自回归条件异方差模型的负荷预测新方法[J].电力系统自动化,2007,31(15):51-54. 被引量:49
  • 5BREMNES J B, VILLANGER F. Probabilistic forecasts for daily wind power production[C]// Proceedings of the Global Wind Power Conference, April 2-5, 2002, Paris, France.
  • 6LUIG A, BOFINGER S, BEYER H G. Analysis of confidence intervals for the prediction regional wind power output[C]//Proceedings of the European Wind Energy Conference, July 2-7, 2001, Copenhagen, Denmark.
  • 7BREMNES J B. Probabilistic wind power forecasts using local quantile regression[J]. Wind Energy, 2004, 7(1): 47-54.
  • 8MOHANDES M A, HALAWANI T O, REHMAN S, et al. Support vector machines for wind speed prediction [J]. Renewable Energy, 2004, 29(6): 939-947.
  • 9KOENKER R, PARK B J. An interior point algorithm for nonlinear quantile regression [J].Journal of Econometrics, 1996, 71(1): 265-283.
  • 10Williams C K I, Rasmussen C E. Gaussian processes for machine learning[M]. Cambridge: MIT Press, 2006: 7-32.

共引文献569

同被引文献134

引证文献10

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部