期刊文献+

机器人测量-操作-加工一体化技术研究及其应用 被引量:16

Research on Robotic Measurement-Operation-Machining Technology and Its Application
下载PDF
导出
摘要 阐述了机器人加工的发展现状与面临的挑战,回顾了机器人测量操作加工一体化所需要的关键技术。以典型的机器人加工过程为例,分析了机器人测量操作加工一体化过程中误差的来源,建立了加工误差及其传递模型,并分别计算分析了测量误差、坐标变换误差与机器人执行误差对加工精度的影响。将机器人测量加工一体化方案用于飞机机翼和机身装配垫片的磨削加工,由点云数据得到工业机械臂的加工轨迹和工艺参数规划数据,通过在机械臂末端安装顺应打磨头来消除工件法向的位置误差,实现恒力打磨。实验结果表明,该机器人加工方案能够实现飞机装配垫片的变厚度磨削加工。 This paper described the current state and challenges for robotic machining,where the integrated measurement-operation-machining technology was reviewed.To analyze the error sources during the integrated measurement-operation-machining technology and the influences on the machining quality,an error model was established.The errors might be classified into the measurement errors,errors by coordinate transformation,and robot motion errors.Based on the error transform model,the influences of different error sources on the machining quality were analyzed.The integrated measurement-operation-machining technology was used to accomplish the polishing tasks of an aircraft assemble gasket.The robotic machining test rig consisted of an industrial robot with a force-controlled polishing head.The measured point cloud data were used to generate the robotic machining path,while the force controlled polishing head was assembled at the end of the robot to compensate the position error.Experiments testify the feasibility of the integrated measurement-operation-machining technology for the varied-thicken aircraft assembly gasket polishing.
作者 陶波 赵兴炜 李汝鹏 丁汉 TAO Bo;ZHAO Xingwei;LI Rupeng;DING Han(School of Mechanical Science and Engineering,Huazhong University of Science and Technology,Wuhan,430074;Shanghai Aircraft Manufacturing Co.,Ltd.,Shanghai,201324)
出处 《中国机械工程》 EI CAS CSCD 北大核心 2020年第1期49-56,共8页 China Mechanical Engineering
基金 国家自然科学基金资助项目(91948301,91748204)
关键词 机器人加工 测量加工一体化 误差模型 飞机装配垫片打磨 robotic machining integrated measurement-operation-machining technology error model aircraft assembly gasket polishing
  • 相关文献

参考文献4

二级参考文献23

  • 1DEVLIEG R, SITTON K, FEIKERT E, et al. ONCE (One Sided Cell End Effector) robotic drilling system [C] // SAE 2002 Automated Fastening Conference and Exposition. Warrendale: SAE, 2002: 2626.
  • 2ATKINSON J, HARTMANN J, JONES S, et al. Ro- botic drilling system for 737 aileron [R]. SAE Technical Paper, 2007.
  • 3BI S S, LIANG J. Robotic drilling system for titanium structures [J]. The International Journal of Advanced Manufacturing Technology, 2011, 54(5) : 767 - 774.
  • 4PAN Z X, ZHANG H. Improving robotic machining ac- curacy by real-time compensation [C]// International Joint Conference, 2009: 4289-4294.
  • 5ZHU W D, QU W W, CAO L H, et al. An off-line programming system for robotic drilling in aerospace manufacturing [J ]. The International Journal of Ad- vanced Manufacturing Technology, 2013, 68 ( 9 ): 2535 - 2545.
  • 6ZARGARBASHI S H H, KHAN W, ANGELES J. The jacobin condition number as a dexterity index in 6R machining robots [J]. Robotics and Computer-lntegrated Manufacturing, 2012, 28(6): 694-699.
  • 7HUO L G, BARON L. The self-adaptation of weights for joint-limits and singularity avoidance of functionally redundant robotic-task [J].Robotics and Computer-In- tegrated Manufacturing, 2011, 27(2): 367- 376.
  • 8ZARGARBASH1 S H H, KHAN W, ANGELES J. Posture optimization in robot-assisted machining opera- tions [J]. Mechanism and Machine Theory, 2012, 51: 74 -86.
  • 9ABELE E, WEIGOLD M, ROTHENBUCHER S. Modeling and identification of a industrial robot for machining application [J]. CIRP Annals-Manufactur- ing Technology, 2007, 56(1) : 387 - 390.
  • 10PENG J Q, XU W F, WANG Z Y, et al. Analytical inverse kinematics and trajectory planning for a 6DOF grinding robot [C] // International Conference on In- formation and Automation, 2013: 834- 839.

共引文献31

同被引文献131

引证文献16

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部