期刊文献+

交换环的二部本质图

Bipartite Essential Graphs of Commutative Rings
下载PDF
导出
摘要 交换环R的本质图EG(R)是一个无向简单图,它以Z(R)\{0}为顶点集,两个不同的顶点x、y之间有一条边相连当且仅当ann(xy)是R的一个本质理想.给出了模n剩余类环Zn的零因子图与本质图相等的充分必要条件.在此基础上,证明了交换环的二部本质图必是完全二部图,并对相应的环进行了同构分类. For a commutative ringR, its essential graphEG(R) is an undirected simple graph whose vertex set is Z(R) \{0}, and two distinct verticesxandyare adjacent if and only if ann(xy) is an essential ideal. By giving a necessary and sufficient condition forZnsuch that its zero-divisor graph coincides with its essential graph, it is showed that a bipartite essential graph of a commutative ring must be a complete bipartite graph, and the classifications of the corresponding rings up to isomorphism are also established.
作者 谷伟平 张倩玉 赵英英 GU Weiping;ZHANG Qianyu;ZHAO Yingying(School of Electromechanical and Information Engineering,Chongqing College of Humanities Science and Technology,Chongqing 401524,China;Department of Construction and Economic Management,Shandong Urban Construction Vocational College,Jinan 250103,China)
出处 《信阳师范学院学报(自然科学版)》 CAS 北大核心 2020年第1期37-41,共5页 Journal of Xinyang Normal University(Natural Science Edition)
基金 国家自然科学基金项目(11501467) 重庆人文科技学院科研项目(CRK2020001-ZK)
关键词 交换环 零因子图 本质图 二部图 commutative ring zero-divisor graph essential graph bipartite graph
  • 相关文献

参考文献3

二级参考文献32

  • 1林莉,易忠,邓培民.有限交换环上的线性元胞自动机[J].广西师范大学学报(自然科学版),2005,23(3):25-28. 被引量:3
  • 2杜先能.关于形式三角矩阵环[J].数学年刊(A辑),2006,27(2):197-202. 被引量:3
  • 3苏华东,唐高华.Z_n[i]的素谱和零因子[J].广西师范学院学报(自然科学版),2006,23(4):1-4. 被引量:9
  • 4BECK I.Coloring of commutative rings[J].J Algebra,1988,116:208-226.
  • 5ANDERSON D F,LIVINGSTON P S.The zero-divisor graph of a commutative ring[J].J Algebra,1999,217:434-447.
  • 6AKBARI S,MAIMANI H R,YASSEMI S.When a zero-divisor graph is planar or a completer r-partite graph[J].J Algebra,2003,270:169-180.
  • 7WU T S.On directed zero-divisor graphs of finite rings[J].Discrete Math,2005,296:73-86.
  • 8REDMOND S P.Central sets and radii of the zero-divisor graphs of commutative rings[J].Communications in Algebra,2006,34:2389-2401.
  • 9唐高华,苏华东,赵寿祥.Z_n[i]的零因子图性质[J].广西师范大学学报(自然科学版),2007,25(3):32-35. 被引量:14
  • 10White A T. Graphs, Groups and Surfaces [ M]. USA : North-Holland Mathematics Studies, 1984.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部