摘要
交换环R的本质图EG(R)是一个无向简单图,它以Z(R)\{0}为顶点集,两个不同的顶点x、y之间有一条边相连当且仅当ann(xy)是R的一个本质理想.给出了模n剩余类环Zn的零因子图与本质图相等的充分必要条件.在此基础上,证明了交换环的二部本质图必是完全二部图,并对相应的环进行了同构分类.
For a commutative ringR, its essential graphEG(R) is an undirected simple graph whose vertex set is Z(R) \{0}, and two distinct verticesxandyare adjacent if and only if ann(xy) is an essential ideal. By giving a necessary and sufficient condition forZnsuch that its zero-divisor graph coincides with its essential graph, it is showed that a bipartite essential graph of a commutative ring must be a complete bipartite graph, and the classifications of the corresponding rings up to isomorphism are also established.
作者
谷伟平
张倩玉
赵英英
GU Weiping;ZHANG Qianyu;ZHAO Yingying(School of Electromechanical and Information Engineering,Chongqing College of Humanities Science and Technology,Chongqing 401524,China;Department of Construction and Economic Management,Shandong Urban Construction Vocational College,Jinan 250103,China)
出处
《信阳师范学院学报(自然科学版)》
CAS
北大核心
2020年第1期37-41,共5页
Journal of Xinyang Normal University(Natural Science Edition)
基金
国家自然科学基金项目(11501467)
重庆人文科技学院科研项目(CRK2020001-ZK)
关键词
交换环
零因子图
本质图
二部图
commutative ring
zero-divisor graph
essential graph
bipartite graph