期刊文献+

离子液体1-丁基-3-甲基咪唑溴盐对CO2电催化还原的活化机理研究 被引量:2

Study on Activation Mechanism of Ionic Liquid [Bmim] Br for CO2 Electrocatalytic Reduction
下载PDF
导出
摘要 利用线性伏安、塔费尔动力学和电化学交流阻抗的表征手段,研究了离子液体1-丁基-3-甲基咪唑溴盐([Bmim]Br)和碳酸丙烯酯构成的电解液中,离子液体对CO 2在Ag片电极电还原过程中的活化作用机理。线性伏安和塔费尔动力学测试表明:以[Bmim]Br作电解质时,CO2电催化还原的起始还原电位正移,并有效促进CO2被还原为CO2·–。电化学交流阻抗测试发现:咪唑阳离子[Bmim]+在Ag片电极上发生吸附,并与CO2·–相互作用形成了[Bmim-CO2]ad中间体,降低了电催化还原CO2反应的活化能,促进了CO2的转化。 Absrtact: The activation mechanism of ionic liquids for CO2 electrocatalytic reduction on Ag electrode sheet was studied by means of linear voltammetry,Tafel kinetics and electrochemical impedance characterization.The electrolyte was constituted of ionic liquid 1-butyl-3-methylimidazolium bromide( [Bmim]Br) and propylene carbonate. The linear voltammetry and Tafel kinetic measurements show that electrolyte [Bmim]Br can positively shift the initial reduction potential of CO2,and effectively promote the reduction of CO2 to free radical of CO2·-. The electrochemical alternating current impedance measurements further show that imidazole cation [Bmim]+ adsorbs on Ag sheet electrode and forms [Bmim-CO2]ad intermediates by interacting with CO2·-,which reduces the activation energy of CO2 electrocatalytic reduction and then effectively accelerates the conversion of CO2.
作者 张进进 卢伟伟 ZHANG Jinjin;LU Weiwei(Chemical Engineering&Pharmaceutics School,Henan University of Science&Technology,Luoyang 471023,China)
出处 《河南科技大学学报(自然科学版)》 CAS 北大核心 2020年第3期99-104,共6页 Journal of Henan University of Science And Technology:Natural Science
基金 国家自然科学基金项目(21673067) 河南科技大学青年学术带头人基金项目(13490001)
关键词 离子液体 电催化还原CO2 电化学交流阻抗谱 催化机理 ionic liquid electrocatalytic reduction of CO 2 electrochemical impedance spectroscopy catalytic mechanism
  • 相关文献

参考文献4

二级参考文献49

  • 1魏文英,尹燕华,韩金玉.水溶性介质中CO_2电催化还原研究进展[J].化工进展,2007,26(2):158-163. 被引量:5
  • 2吴永良,焦真,王冠楠,吴有庭,张志炳.用于CO_2吸收的离子液体的合成、表征及吸收性能[J].精细化工,2007,24(4):324-327. 被引量:51
  • 3Staffan J, Anna J. The Diffusion of Renewable Energy Technology: An Analytical Framework and Key Issues for Research [J]. EnergyPolicy, 2000, 28(9): 625-640.
  • 4Olah G A. Beyond Oil and Gas: The Methanol Economy [J]. Angew. Chem. Int. Ed., 2005, 44(18): 2636-2639.
  • 5Lewis N S, Nocera D (3. Powering the Planet Chemical Challenges in Solar Energy Utilization [J]. PNAS, 2006, 103(43): 15729-15735.
  • 6Lewis N S. Toward Cost-effective Solar Energy Use [J]. Sustainability and Energy, 2007, 315(5813): 798-801.
  • 7Whipple D T, Kenis P J A. Prospects of CO., Utilization via Direct Heterogeneous Electrochemical Reduction [J]. J. Phys. Chem. Lett., 2010, 1(24): 3451-3458.
  • 8Centi G, Perathoner S. Opportunities and Prospects in the Chemical Recycling of Carbon Dioxide to Fuels [J]. Catal. Today, 2009, 148(3): 191-205.
  • 9Benson E E, Kubiak C P, Sathrum A J, et al. Electrocatalytic and Homogeneous Approaches to Conversion of CO_, to Liquid Fuels [J]. Chem. Soc. Rev., 2009, 38(1): 89-99.
  • 10乔治A奥拉,阿兰·戈佩特,GK苏耶·普拉卡西.跨越油气时代:甲醇经济[M].胡金波,戴立信,郑吉,等,译.北京:化学工业出版社.2007.166—170.

共引文献28

同被引文献22

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部