期刊文献+

基于改进ERFNet的无人直升机着舰环境语义分割 被引量:2

Semantic Segmentation of Landing Environment for Unmanned Helicopter Based on Improved ERFNet
下载PDF
导出
摘要 为增强无人直升机对着舰环境的感知理解,促进其安全高效地实现自主着舰,将ERFNet网络模型应用于无人直升机着舰场景语义分割任务中。首先,结合非对称残差模块和弱瓶颈模块对ERFNet网络模型进行改进,提高运行速度、减少精度损失;其次,利用MultiGenCreator和VegaPrime等技术开发无人机自主着舰仿真系统,并建立无人机自主着舰场景数据集;最后,采用PyTorch深度学习框架实现网络模型,采取模型再训练方法对网络进行学习和训练。实验结果表明,所提网络综合优势明显,平均交并比(Mean Intersection over Union,MIOU)达到76.35%,前向传播时间为22.37 ms。 In order to enhance the perception of landing environment for the unmanned helicopter and promote its safe and efficient realization of the autonomous landing,the ERFNet network model is applied to the semantic segmentation task of unmanned helicopter landing scenes.Firstly,the ERFNet network model is improved by combining the asymmetric convolution module and the non-bottleneck-1D module to improve the operation speed and reduce precision loss.Secondly,the MultiGenCreator and VegaPrime technology are used to develop the autonomous landing simulation system,and the autonomous landing scene dataset is also established.Finally,the PyTorch deep learning framework is used to implement the network model,and the model retraining method is adopted for network learning and training.The experimental results show that the network has better comprehensive network advantages,with the mean intersection over union(MIOU)reaching 76.35%and the forward propagation time 22.37 ms.
作者 刘健 张祥甫 于志军 吴中红 LIU Jian;ZHANG Xiangfu;YU Zhijun;WU Zhonghong(College of Weapons Engineering,Naval University of Engineering,Wuhan 430000,China;Teaching and Research Department,Unit 91206 of PLA,Qingdao 266109,China)
出处 《电讯技术》 北大核心 2020年第1期40-46,共7页 Telecommunication Engineering
基金 国家自然科学基金资助项目(61773395)
关键词 无人直升机 自主着舰 环境感知 语义分割 深度学习 扩张卷积 unmanned helicopter automatic landing on ship environment perception semantic segmentation deep learning dilated convolution
  • 相关文献

参考文献6

二级参考文献35

  • 1李英杰,吴文海,韩维元.舰载机自动着舰导引的相关技术[J].飞机设计,2004,24(3):61-64. 被引量:9
  • 2李亚臣,胡健,黎远忠,罗永锋,颜澎.基于Vega Prime的航天器视景仿真中的多坐标系问题[J].系统仿真学报,2007,19(3):575-578. 被引量:18
  • 3BEZDEK J C. Pattem recognition with fuzzy objective function algorithms[ M]. New York : Plenum Press, 1981.
  • 4CHEN S, ZHANG D. Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure[J]. IEEE Transactions on Systems, Man and Cybernetics ,2004, 34(4) : 1907 - 1916.
  • 5DERIN H, ELLIOTF H. Modeling and segmentation of noisy and textured images using gibbs random fields [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987( 1 ) :39 - 55.
  • 6KITTLER J, HATEF M, ROBERT P W, et al. On combining classifiers[J]. IEEE Transactons on Pattern Analysis and Machine Intelligence, 1998,20(3) : 226 - 239.
  • 7刘应中 缪国平.船舶在波浪上的运动理论[M].上海:上海交通大学出版社,1986..
  • 8Research on Visua/Simulation System in CTCS3 Simula- tion and Test Platform[ C]. Proceedings of 17th World Congress on Ergonomics, 2009.
  • 9武小红,周建江.可能性模糊C-均值聚类新算法[J].电子学报,2008,36(10):1996-2000. 被引量:34
  • 10薛雪东,徐兵,洪光,于鑫.基于Creator/Vega Prime的某导弹发射设备模拟训练系统[J].弹箭与制导学报,2008,28(6):307-310. 被引量:12

共引文献35

同被引文献22

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部