摘要
为考察ATIS提供的预测信息对降级路网交通流演化的影响,设计了一种基于加权移动平均的行程时间预测方法,建立了预测信息环境下的路径更新规则。针对一个小型测试网络,利用提出的路径更新规则分析了预测信息依赖程度参数、信息质量参数、权值参数以及网络降级程度对交通流演化的影响。结果表明:1)信息环境下出行者对预测信息的依赖存在一个临界值,当依赖程度小于该值时,交通流很快演化至稳定状态,当依赖程度大于该值时,网络交通流会发生振荡;2)存在某种情形,信息系统所提供的预测信息质量越高,交通流演化的效果越差;3)对特定降级网络,存在某一最优权值组合,可用于指导该网络预测信息的发布;4)路网降级程度越小,预测信息所起的作用越大。
In order to investigate the influence of the forecast information provided by ATIS on the evolution of degradable road network traffic flow, a travel time prediction method based on weighted moving average was designed, and the route updating rule in forecast information environment was established. For a small test network, the influence of the forecast information dependence parameter, the information quality parameter, the weight combination parameter and the network degradation degree on the evolution of traffic flow were analyzed by using the proposed route updating rule. The results show that: 1) there exists a critical value for travelers’ dependence on forecast information in the information environment. When the dependence degree is less than the critical value, the network traffic flow quickly evolves to a stable state, when the dependence degree is greater than the critical value, the network flow will oscillate;2) there is a certain situation, the higher the information quality provided by forecast information, the worse the evolution effect of the traffic flow;3) for a specific degradable network, there exists an optimal weight combination, which can be used to guide publishing the network forecast information;4) the smaller the network degradation degree, the greater the role of the forecast information.
作者
况爱武
张胜伟
覃定明
KUANG Ai-wu;ZHANG Sheng-wei;QIN Ding-ming(School of Traffic and Transportation Engineering,Changsha University of Science and Technology,Changsha 410114,China)
出处
《长沙理工大学学报(自然科学版)》
CAS
2019年第4期27-34,共8页
Journal of Changsha University of Science and Technology:Natural Science
基金
国家自然科学基金资助项目(51978082)
湖南省教育厅优秀青年项目(16B008)
智能道路与车路协同湖南省重点实验室项目(2017TP1016)
关键词
网络交通流
降级路网
预测信息
加权移动平均
随机用户均衡
network traffic flow
degradable road network
forecast information
weighted moving average
stochastic user equilibrium