期刊文献+

基于CEEMDAN能量权重法的轴承故障诊断 被引量:1

Fault Diagnosis for Bearing Based on CEEMDAN Energy Weighting Method
下载PDF
导出
摘要 针对强噪声干扰下轴承微弱故障特征难以通过单一的降噪或特征增强方法进行提取的问题,提出了一种基于时频谱分析的冲击能量增强的能量权重法,将噪声消除与特征增强2类方法进行融合,从而实现强噪声背景下微弱冲击的特征提取,并通过352226X2-2Z型圆锥滚子轴承内圈故障的试验验证了该方法在实际应用中的有效性。 Aimed at difficult extraction of weak fault features of bearing under strong noise interference by a single method of noise reduction or feature enhancement,an energy weighting method of impact energy enhancement based on time-frequency spectrum analysis is proposed.The methods of noise elimination and feature enhancement are combined to realize feature extraction of weak impact under strong noise background.The validity of the method in actual application is verified by test for inner ring fault of tapered roller bearing 352226X2-2Z.
作者 周亦人 邱小林 张兰 ZHOU Yiren;QIU Xiaolin;ZHANG Lan(Nanchang Institute of Technology,Nanchang 330044,China;Tianjin University,Tianjin 300350,China)
出处 《轴承》 北大核心 2020年第1期43-47,共5页 Bearing
基金 江西省教育厅科学技术研究项目(GJJ171039)
关键词 滚动轴承 故障诊断 特征提取 CEEMDAN 能量 统计权重 rolling bearing fault diagnosis feature extraction CEEMDAN energy statistical weight
  • 相关文献

参考文献5

二级参考文献30

  • 1郭代飞,高振明,张坚强.利用小波门限法进行信号去噪[J].山东大学学报(理学版),2001,36(3):306-311. 被引量:22
  • 2潘阳,陈安华,蒋玲莉,李学军.基于自适应共振解调技术的滚动轴承故障诊断[J].机械科学与技术,2015,34(2):238-241. 被引量:7
  • 3冷永刚,王太勇,郭焱,汪文津,胡世广.级联双稳系统的随机共振特性[J].物理学报,2005,54(3):1118-1125. 被引量:26
  • 4冷永刚,王太勇,郭焱,吴振勇.双稳随机共振参数特性的研究[J].物理学报,2007,56(1):30-35. 被引量:55
  • 5ECabal - Yepez E, Vahierra - Rodriguez M, Romero - Troncoso R J, et al. FPGA - Based Online Detection of Muhiplecombined Faults Through Information Entropy and Neural Networks [C]. International Conference on Reconfigurable Computing and FPGAs, 2010.
  • 6Hernandez -Vargas M, Cabal -Yepez E, Garcia -Per- ez A. Real - Time SVD - Based Detection of Multiple Combined Fauhs in Induction Motors [J]. Computers & Electrical Engineering, 2014,40(7) :2 193 -2 203.
  • 7Smart E, Brown D J, Axel - Berg L. Comparing One and Two Class Classification Methods for Multiple Fault Detection on an Induction Motor [C]. 2013 IEEE Sym- posium on Industrial Electronics & Applications, 2013.
  • 8Zuber N, Cvetkovic D, Bajri6 R. Multiple Fault Eden- tification Using Vibration Signal Analysis and Artificial Intelligence Methods [J]. Applied Mechanics & Mate- rials,2013,430( 1 ) : 63 -69.
  • 9Romero - Troncoso R J, Saucedo - Gallaga R, Cabal - Yepez E, et al. FPGA - Based Online Detection of Multiple Combined Faults in Induction Motors Through Information Entropy and Fuzzy Inference [J]. IEEE Transactions on Industrial Electronics, 2011, 58 ( 11 ) : 5 263 -5 270.
  • 10Antoni J. Cyclic Spectral Analysis of Rolling - Element Bearing Signals: Facts and Fictions [J]. Journal of Sound & Vibration, 2007, 304(3/4/5) : 497 -529.

共引文献49

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部