期刊文献+

Modification of tubular chitosan-based peripheral nerve implants: applications for simple or more complex approaches 被引量:4

Modification of tubular chitosan-based peripheral nerve implants: applications for simple or more complex approaches
下载PDF
导出
摘要 Surgical treatment of peripheral nerve injuries is still a major challenge in human clinic.Up to now,none of the well-developed microsurgical treatment options is able to guarantee a complete restoration of nerve function.This restriction is also effective for novel clinically approved artificial nerve guides.In this review,we compare surgical repair techniques primarily for digital nerve injuries reported with relatively high prevalence to be valuable attempts in clinical digital nerve repair and point out their advantages and shortcomings.We furthermore discuss the use of artificial nerve grafts with a focus on chitosan-based nerve guides,for which our own studies contributed to their approval for clinical use.In the second part of this review,very recent future perspectives for the enhancement of tubular(commonly hollow)nerve guides are discussed in terms of their clinical translatability and ability to form three-dimensional constructs that biomimick the natural nerve structure.This includes materials that have already shown their beneficial potential in in vivo studies like fibrous intraluminal guidance structures,hydrogels,growth factors,and approaches of cell transplantation.Additionally,we highlight upcoming future perspectives comprising co-application of stem cell secretome.From our overview,we conclude that already simple attempts are highly effective to increase the regeneration supporting properties of nerve guides in experimental studies.But for bringing nerve repair with bioartificial nerve grafts to the next level,e.g.repair of defects>3 cm in human patients,more complex intraluminal guidance structures such as innovatively manufactured hydrogels and likely supplementation of stem cells or their secretome for therapeutic purposes may represent promising future perspectives. Surgical treatment of peripheral nerve injuries is still a major challenge in human clinic. Up to now, none of the well-developed microsurgical treatment options is able to guarantee a complete restoration of nerve function. This restriction is also effective for novel clinically approved artificial nerve guides. In this review,we compare surgical repair techniques primarily for digital nerve injuries reported with relatively high prevalence to be valuable attempts in clinical digital nerve repair and point out their advantages and shortcomings. We furthermore discuss the use of artificial nerve grafts with a focus on chitosan-based nerve guides, for which our own studies contributed to their approval for clinical use. In the second part of this review, very recent future perspectives for the enhancement of tubular(commonly hollow) nerve guides are discussed in terms of their clinical translatability and ability to form three-dimensional constructs that biomimick the natural nerve structure. This includes materials that have already shown their beneficial potential in in vivo studies like fibrous intraluminal guidance structures, hydrogels, growth factors, and approaches of cell transplantation. Additionally, we highlight upcoming future perspectives comprising co-application of stem cell secretome. From our overview, we conclude that already simple attempts are highly effective to increase the regeneration supporting properties of nerve guides in experimental studies.But for bringing nerve repair with bioartificial nerve grafts to the next level, e.g. repair of defects > 3 cm in human patients, more complex intraluminal guidance structures such as innovatively manufactured hydrogels and likely supplementation of stem cells or their secretome for therapeutic purposes may represent promising future perspectives.
出处 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第8期1421-1431,共11页 中国神经再生研究(英文版)
关键词 bioartificial nerve graft biological nerve graft cell transplantation cellular products luminal structures peripheral nerve repair bioartificial nerve graft biological nerve graft cell transplantation cellular products luminal structures peripheral nerve repair
  • 相关文献

参考文献3

二级参考文献6

共引文献33

同被引文献20

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部