期刊文献+

基于多指标评价的清洁能源互补优选策略 被引量:5

Clean energy complementary optimization strategy based on multi-index evaluation
下载PDF
导出
摘要 随着新能源的快速发展,多种清洁能源互补发电运行在电力系统中逐渐占据重要地位。本文提出了一种考虑多指标综合评价的多能互补方法。根据灰色预测模型及Weibull分布模型对光伏发电和风力发电进行功率预测,设计不同类型多能互补方案;分别建立能源负荷曲线差异度指标、能源组合经济指标和稳定性指标,并提出一种考虑多因素影响的综合评价方法。算例结果验证了所提多指标评价方法用于清洁能源互补方案选择的有效性。 With the rapid development of new energy,a variety of clean energy complementary power generation plays an important role in the power system.This paper presents a multi-energy complementary method considering multi-index comprehensive evaluation.According to the grey prediction model and Weibull distribution model,the power prediction of photovoltaic power generation and wind power generation is carried out,and different types of multi-energy complementary schemes are designed.Different index of energy load curve,economic index of energy combination and stability index are established respectively,and a comprehensive evaluation method considering the influence of multiple factors is proposed.The results of the calculation example verify the effectiveness of the proposed multi-index evaluation method in the selection of clean energy complementary schemes.
作者 程思举 杨建华 肖达强 姜飞 Cheng Siju;Yang Jianhua;Xiao Daqiang;Jiang Fei(School of Electrical and Information Engineering,Changsha University of Science&Technology,Changsha 410004;Central China Branch of State Grid Corporation of China,Wuhan 430077)
出处 《电气技术》 2020年第1期25-30,共6页 Electrical Engineering
关键词 多能互补 灰色预测 WEIBULL分布 综合评价 multi-energy complement grey prediction model Weibull distribution mode comprehensive evaluation
  • 相关文献

参考文献11

二级参考文献193

  • 1吴义纯,丁明.基于蒙特卡罗仿真的风力发电系统可靠性评价[J].电力自动化设备,2004,24(12):70-73. 被引量:90
  • 2王海超,鲁宗相,周双喜.风电场发电容量可信度研究[J].中国电机工程学报,2005,25(10):103-106. 被引量:134
  • 3国家电网公司.Q/GDW392--2009风电场接入电网技术规定[S].北京:中国电力出版社,2010.
  • 4Woyte A, Van V, Belmans R, et al. Voltage fluctuations on distribution level introduced by photovoltaic systems[J]. IEEE Trans. on Energy Conversion, 2006, 21(1): 202-209.
  • 5Giraud F. Analysis of a utility-interactive wind- photovoltaic hybrid system with battery storage using neural network[D]. Lowell: University of Massachusetts, 1999.
  • 6Kellogg W. Generation unit sizing and cost analysis.for stand-alone wind, photovoltaic, and hybrid wind/PV systems[J]. IEEE Trans. on Energy Conversion, 1998, 13(1): 70-75.
  • 7Borowy B S, Salameh Z M. Methodology for optimally sizing the combination of a battery bank and PV array in a wind/PV hybrid system[J]. IEEE Trans. on Energy Conversion, 1996, 11(2): 367-375.
  • 8Shrestha G B, Goel L. A study on optimal sizing of stand-alone photovoltaic stations[J]. IEEE Trans. on Energy Conversion, 1998, 13(4): 373-378.
  • 9Dufo-Lrpez R, Jos6 L, Agustin B, et al. Multi-objective design of PV-wind-diesel-hydrogen-battery systems[J]. Renewable Energy, 2008, 33(12): 2559-2572.
  • 10Dufo-Lopez R, Jose L, Agustin B, et al. Multi-objective optimization minimizing cost and life cycle emissions of stand-alone PV- wind- diesel systems with batteries storage[J]. Applied Energy, 2011, 88(11): 4033-4041.

共引文献668

同被引文献112

引证文献5

二级引证文献104

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部