期刊文献+

基于D-H方法的波浪滑翔器动力学仿真分析 被引量:5

Dynamic simulation analysis on wave glider based on D-H approach
下载PDF
导出
摘要 为了研究波浪滑翔器多体结构的动力学特性,本文利用D-H方法表示了波浪滑翔器各部分速度和位置的关系,结合波浪滑翔器结构特性推导波浪滑翔器的动力学方程。通过水池试验验证模型正确性,在Matlab-Simulink软件环境下进行运动仿真试验。试验结果表明:该建模方法可有效表示浮体与滑翔器之间较强的耦合关系,相较于传统方法提供更多参数,更好地分析得出波浪滑翔器的运动特性和其影响因素,便于后续研究。 In order to study the dynamic characteristics of multi-body structure of wave glide,based on the D-H approach,the relationship between the velocity and position of the wave glider is represented,and the dynamic equation of the wave glider is derived from the structure of the wave glider.The correctness of the model is verified by tank test results,and the motion simulation model is built in the MATLAB-Simulink software environment.The experimental results show that the modeling method can effectively represent the strong coupling relationship between the floating body and the glider,and provides more parameters than the traditional method,which is better to analyze the motion characteristics of the wave glider and its influencing factors.
作者 杨鲲 卢倪斌 隋海琛 王磊峰 李晔 YANG Kun;LU Nibin;SUI Haichen;WANG Leifeng;LI Ye(Tianjin Research Institute for Water Transport Engineering,M.O.T.,Tianjin 300456,China;Tianjin Key Laboratory of Surveying and Mapping for Water Transport Engineering,Tianjin Survey and Design Institute for Water Transport Engineering,Tianjin 300456,China;Science and Technology on Underwater Vehicle Laboratory,Harbin Engineering University,Harbin 150001,China)
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2020年第1期145-152,共8页 Journal of Harbin Engineering University
基金 中央级公益性科研院所基本科研业务费专项资金项目(TKS170224,TKS180406)
关键词 波浪滑翔器 波浪能 动力学模型 多体动力学 运动仿真 D-H方法 数值模拟 水池试验 wave glider ocean wave energy dynamics model multi-body dynamics motion simulation D-H approach numerical simulation tank test
  • 相关文献

参考文献6

二级参考文献60

  • 1张奇峰,张艾群.基于能源消耗最小的自治水下机器人—机械手系统协调运动研究[J].机器人,2006,28(4):444-447. 被引量:11
  • 2文圣常,余宙文.波浪理论与计算原理[M].北京:科技出版社,1985,118-124.
  • 3Roberts G, Sutton R. Advances in unmanned marine vehi- cles[M]. London, UK: Institution of Engineering and Technol- ogy, 2006.
  • 4Manley J, Willcox S. The wave glider: A persistent platform for ocean science[C]//OCEANS 2010. Piscataway, USA: IEEE, 2010: 1-5.
  • 5Hine R, Willcox S, Hine G, et al. The wave glider: A wave-powered autonomous marine vehicle[C]//Proceedings of MTS/IEEE Oceans. Piscataway, USA: IEEE, 2009: 1-6.
  • 6Georgiades C, Nahon M, Buehler M. Simulation of an underwa- ter hexapod robot[J]. Ocean Engineering, 2009, 36(1): 39-47.
  • 7Graver J G. Underwater gliders: Dynamics, control and de- sign[D]. Princeton, USA: Princeton University, 2005.
  • 8Amundarain M, Alberdi M, Garrido A J, et al. Modeling and simulation of wave energy generation plants: Output power control[J]. IEEE Transactions on Industrial Electronics, 2011, 58(1): 105-117.
  • 9Beach J N. Integration of an acoustic modem onto a wave glider unmanned surface vehicle[D]. Monterey, USA: Naval Postgrad- uate School, 2012.
  • 10Hoerner S E Fluid-dynamic drag: Practical information on aerodynamic drag and hydrodynamic resistance[M]. Bakers- field, USA: Hoerner Fluid Dynamics, 1965.

共引文献53

同被引文献43

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部