期刊文献+

一类带渐近位势半线性椭圆方程解的多重性研究 被引量:1

Multiple Solutions for a Class of Semilinear Elliptic Equations with Asymptotical Potentials
下载PDF
导出
摘要 讨论了半线性椭圆方程-Δu+a(x)u=g(x,u)解的多重性。其中非线性项g的原函数是渐近二次增长的,a可以符号变换。通过使用临界点定理,选取了一些新的条件来保证上述问题解的存在多重性,改善了以前的研究结果。 The multiplicity solutions for the semilinear elliptic equations-Δu+a(x)u=g(x,u)were discussed.The primitive of the nonlinearity g is of asymptotically quadratic growth and the potential a is allowed to be sign-changing.Some new conditions are established by using critical point theory to guarantee multiple solutions of the above problem,which improve research results at present.
作者 杨洁勤 陈会文 刘冬元 肖可 YANG Jieqin;CHEN Huiwen;LIU Dongyuan;XIAO Ke(School of Mathematics and Physics,University of South China,Hengyang,Huan 421001,China)
出处 《南华大学学报(自然科学版)》 2019年第6期41-45,共5页 Journal of University of South China:Science and Technology
基金 湖南省教育厅基金资助项目(15C1171)
关键词 半线性椭圆方程 渐近线性 临界点理论 semilinear elliptic equations asymptotically linear critical point theory
  • 相关文献

参考文献3

二级参考文献27

  • 1钟金标,陈祖墀.EXISTENCE AND UNIQUENESS OF POSITIVE SOLUTIONS TO A CLASS OF SEMILINEAR ELLIPTIC SYSTEMS[J].Acta Mathematica Scientia,2002,22(4):451-458. 被引量:9
  • 2ZHONGJinbiao CHENZuchi.EXISTENCE AND NONEXISTENCE OF POSITIVE RADIAL SOLUTIONS FOR A CLASS OF SEMILINEAR ELLIPTIC SYSTEMS[J].Journal of Systems Science & Complexity,2004,17(3):325-331. 被引量:4
  • 3VasileI Istratescu著 王濯缨等译.不动点理论及其应用[M].上海:上海科学技术文献出版社,1991.9.
  • 4Dalmass R.Existence and uniqueness of positive solutions of semilinear elliptic systems[J]. Nonlinear Analysis, 2000( 39 ): 559-568.
  • 5Nurettin C, Albert K E. Existence of solutions of the Dirichlet problem for △u + λu + h(D, Du)Du = f(x) [J]. Nonlinear Analysis, 2000 ( 39 ): 241-245.
  • 6Deimling K. Nonlinear functional analysis[M]. Berlin: Springer press, 1985 : 123-127.
  • 7Gilbarg D, Trudinger N. Elliptic partial Differential Equations of second order[M]. Berlin: Springer press, 1983 : 238-249.
  • 8张恭庆 林源渠.泛函分析讲义[M].北京:北京大学出版社,1987.226.
  • 9郭大钧.非线性泛函分析[M].济南:山东科学技术出版社,2002.193~194
  • 10Astrita G, Marrucci G. Principles of Non-Newtonian Fluid Mechanics. New York: McGraw-Hill, 1974.

共引文献2

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部