期刊文献+

基于改进RRT算法的无人机航路规划与跟踪方法研究 被引量:4

Research on a Path Planning and Trajectory Tracking Method for UAVs Based on Improved RRT Algorithm
下载PDF
导出
摘要 为了使航路规划算法在三维动态环境下能够快速规划出较优可行航路,基于快速扩展随机树算法(RRT),对规划航路点进行了无人机飞行动力学约束,并且设计了局部航路动态优化策略。针对传统的航路跟踪控制律跟踪较为曲折的航线时跟踪误差较大的问题,通过将规划算法得出的姿态指令引入姿态控制回路的方式,提高了航路跟踪控制算法的快速性与准确性。在此基础上,搭建了无人机验证平台,利用该验证平台完成了无人机自主避障飞行试验,对算法的有效性进行了验证,并对算法性能进行了评估。 In order to figure out good and flyable trajectories quickly for UAVs in 3 D dynamic environment,a path planning and tracking method for UAV based on the rapidly-exploring random tree(RRT)is proposed in this paper,carries out the UAV flight dynamic constraint on the planned route points,and designs a local route dynamic optimization strategy.Aiming at the problem of large tracking error when the traditional route tracking control law tracks relatively zigzag route,the speed and accuracy of the route tracking control algorithm are improved by introducing the attitude instruction from the planning algorithm into the attitude control loop.On this basis,a UAV verification platform is built in this paper,which is used to complete the autonomous obstacle avoidance flight test of UAV,verify the effectiveness of the algorithm,and evaluate the performance of the algorithm.
作者 马蓉 MA Rong(Science and Technology on Aircraft Control Laboratory,AVIC XI AN Flight Automatic Control Research Institute,Xi an 710076,China)
出处 《导航定位与授时》 2020年第1期12-17,共6页 Navigation Positioning and Timing
基金 装备预研中航工业联合基金(6141B05061001)
关键词 航路规划 快速搜索随机树 三维动态环境 航迹跟踪 Path planning Rapidly-exploring random tree 3D and dynamic environment Trajectory tracking
  • 相关文献

参考文献1

二级参考文献13

  • 1Zheng C W, Xu F J, Hu X H, et al. Online route planner for un- manned air vehicle navigation in unknown battlefield environ- ment[C]//Computational Engineering in Systems Applications, IMACS Multiconference. Piscataway, USA: IEEE, 2006: 814- 818.
  • 2Wang X H, Yadav V, Balakrishnan S N. Cooperative UAV for- mation flying with obstacle/collision avoidance[J]. IEEE Trans- actions on Control Systems Technology, 2007, 15(4): 672-679.
  • 3Nikolos I K, Valavanis K P, Tsourveloudis N C, et al. Evolution- ary algorithm based of/line/online path planner for UAV naviga- tion[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2003, 33(6): 898-912.
  • 4Paul T, Krogstad T R, Gravdahl J T. Modelling of UAV for- mation flight using 3D potential field[J]. Simulation Modelling Practice and Theory, 2008, 16(9): 1453-1462.
  • 5Shah M A, Aouf N. Dynamic cooperative perception and path planning for collision avoidance[C]//ISMA'09 on Mechatronics and Its Applications. Piscataway, USA: IEEE, 2009: 1-7.
  • 6Qin S J, Badgwell T A. A survey of industrial model predictive control technology[J]. Control Engineering Practice, 2003, 11: 733-764.
  • 7Kang Y, Hedrick J K. Design of nonlinear model predictive con- troller for a small fixed-wing unmanned aerial vehicle[R]. Re- ston, USA: AIAA, 2006.
  • 8Tsourdos A, White B, Shanmugavel M. Cooperative path plan- ning of unmanned aerial vehicle[M]. Hoboken, USA: John Wi- ley & Sons Inc., 2011: 19-20.
  • 9Farouki R T, Sakkalis T. Pythagorean hodographs[J]. IBM Jour- nal of Research and Development, 1990, 34(5): 736-752.
  • 10Farouki R T. The elastic bending energy of Pythagorean hodo- graph curves[J]. Computer Aided Geometric Design, 1996, 13(3): 227-241.

共引文献22

同被引文献25

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部