期刊文献+

基于强化学习的鱼群自组织行为模拟 被引量:5

Simulation on self-organization behaviors of fish school based on reinforcement learning
下载PDF
导出
摘要 自组织行为广泛存在于自然界中。为了通过学习的方式模拟鱼群自组织行为,构建了鱼群模拟环境模型、智能体模型和奖励机制,并提出了一种基于赫布迹和行动者-评价者框架的多智能体强化学习方法。该方法利用赫布迹加强游动策略的学习记忆能力,基于同构思想实现了多智能体的分布式学习。仿真结果表明,该方法能够适用于领航跟随、自主漫游、群体导航等场景中鱼群自组织行为学习,并且基于学习方法模拟的鱼群展现的行为特性与基于博德规则计算模拟的鱼群行为类似。 Self-organizing behaviors are widespread in nature. In order to simulate self-organizing behaviors of the fish school through learning,the fish school simulation environment model,the agent model and the reward mechanism were built,and a multi-agent reinforcement learning approach based on Hebbian trace and actor-critic framework was proposed as well. This approach uses Hebbian trace to enhance the swimming strategy learning with memory ability and realizes the distributed learning of multi-agent based on the homogeneous hypothesis. The simulation results show that the proposed approach can be applied to self-organizing behaviors learning of the fish school in the scenarios of leader-follower,autonomous wandering and navigation. Moreover,the characteristics of the fish school based on learning methods is similar to that based on Boids rules.
作者 杨慧慧 黄万荣 敖富江 YANG Huihui;HUANG Wanrong;AO Fujiang(College of Fisheries and Life Science,Dalian Ocean University,Dalian 116023,China;Academy of Military Sciences,Beijing 100071,China)
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2020年第1期194-202,共9页 Journal of National University of Defense Technology
关键词 自组织行为 鱼群 赫布迹 强化学习 多智能体 self-organizing behaviors fish school Hebbian trace reinforcement learning multi-agent
  • 相关文献

同被引文献26

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部