期刊文献+

改进引力搜索算法用于工控系统入侵检测 被引量:5

Improved gravitational search algorithm for industrial control system intrusion detection
下载PDF
导出
摘要 为提高引力搜索算法的全局搜索能力和收敛速度,提出改进引力搜索算法(IGSA)。为引力常量嵌入混沌映射,使其在减小的同时可以混沌地变化,快速地跳出局部极小值,扩展搜索区域;引入细菌觅食算法(BFA)的趋化算子,利用最优个体信息对当前最佳粒子进行调整,提高收敛速度。4种基准函数的测试结果对比表明,IGSA有着更好的搜索能力和收敛速度。利用IGSA对孪生支持向量机(TWSVM)的参数进行寻优,将寻优后的TWSVM分类器应用于工控标准入侵检测数据集。实验结果表明,IGSA-TWSVM对整体入侵的误报率、漏报率和对各类入侵的检测率都优于其它算法。 To improve the global search ability and convergence speed of gravitation search algorithm,an improved gravity search algorithm(IGSA)was proposed.The chaotic map was embedded into the gravitational constant to make it change chaotically while decreasing,so that it quickly jumped out of the local minimum to expand the search area.The chemotactic operator of the bacterial foraging algorithm(BFA)was introduced,and the optimal individual information was used to adjust the current optimal particle to improve the convergence rate.The test results of the four benchmark functions show that IGSA has better search abi-lity and convergence speed.The IGSA was used to optimize the parameters of the twin support vector machine(TWSVM),and the optimized TWSVM classifier was applied to the industrial control standard intrusion detection data set.The results show that IGSA-TWSVM has better false positive rate and false negative rate of the overall intrusion and the detection rate of various intrusions than other algorithms.
作者 张晓宇 王华忠 ZHANG Xiao-yu;WANG Hua-zhong(Key Laboratory of Advanced Control and Optimization for Chemical Processes of Ministry of Education,East China University of Science and Technology,Shanghai 200237,China)
出处 《计算机工程与设计》 北大核心 2020年第1期33-39,共7页 Computer Engineering and Design
关键词 改进引力搜索算法 混沌映射 趋化算子 孪生支持向量机 入侵检测 improved gravitational search algorithm chaotic map chemotaxis operator twin support vector machine intrusion detection
  • 相关文献

参考文献4

二级参考文献32

  • 1何平,刘宏,金明河.基于样条函数的机器人轨迹规划方法[J].机器人,2003,25(z1):614-618. 被引量:16
  • 2张丽新,王家钦,赵雁南,杨泽红.机器学习中的特征选择[J].计算机科学,2004,31(11):180-184. 被引量:18
  • 3TAN J Y, ZHANG Z Q, ZHEN L, et al. Adaptive feature se- lection via a new version of support vector machine[J]. Neural computing and applications, 2013,23(3/4) : 937-945.
  • 4SHAO Yanhai, DENG Naiyang, CHEN Weijie, et al. Im- proved generalized eigenvalue proximal support vector Machine [J]. IEEE signal processing letters,2013,20(3):213-216.
  • 5SHAO Yanhai, WANG Zhen, CHEN Weijie, et al. A regu- larization for the projection twin support vector machine[J]. Knowledge-based systems, 2013,37 : 203-210.
  • 6SHAO Yanhai, ZHANG Chunhua, WANG Xiaobo, et al. Im- provements on twin support vector machines[J]. IEEE trans- actions on neural networks,2011,Z2(6) :962-968.
  • 7CHEN Yiwei, LIN C H. Combine SVMs with various fea- ture selection strategies[J]. Studies in fuzziness and soft computing, 2006,207 : 315-324.
  • 8ISABELLE G, JASON W, STEPHEN B, et al. Gene selec- tion for cancer classification using support vector machines [J]. Machine learning, 2002,46 : 389-422.
  • 9张浩,张铁男,沈继红,李阳.Tent混沌粒子群算法及其在结构优化决策中的应用[J].控制与决策,2008,23(8):857-862. 被引量:78
  • 10胡毅,于东,刘明烈.工业控制网络的研究现状及发展趋势[J].计算机科学,2010,37(1):23-27. 被引量:42

共引文献94

同被引文献44

引证文献5

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部