期刊文献+

基于混沌粒子群的车道线检测算法 被引量:4

Lane detection algorithm based on chaotic particle swarm
下载PDF
导出
摘要 为解决在恶劣天气、光照条件变化和路面信息干扰等情况下的车道线检测识别率低的问题,提出一种采用核Fisher线性判别分析灰度变换以及混沌粒子群的车道线检测算法。将高维的RGB彩色图像通过最佳鉴别投影向量投影到低维的子空间,通过混沌粒子群算法,根据车道线特征,遍历粒子取值范围内的空间,寻找适应度函数最大的解,根据最优解获得的直线参数在图像上拟合车道线。实验结果表明,所提算法能够实现各种道路情况下的车道线检测功能,验证了该算法具有良好的鲁棒性。 To improve the lane detection accuracy in the case of bad weather,the changing in lighting conditions,the road information interference and so on,a lane detection algorithm combining the kernel Fisher discriminant analysis gray scale transformation and chaotic particle swarm was proposed.The high-dimensional RGB color image was projected to the low-dimensional subspace using the optimal discriminant projection vector.The chaotic particle swarm algorithm was used to traverse the space within the range of the particle value according to the lane line feature,and the largest fitness function was found.The lane marking was fitted on the image according to the line parameter obtained according to the optimal solution.Experimental results demonstrate the lane marking detection can be identified using the proposed method under various road conditions with good robustness.
作者 樊超 宋雨佩 焦亚杰 FAN Chao;SONG Yu-pei;JIAO Ya-jie(College of Information Science and Engineering,Henan University of Technology,Zhengzhou 450001,China)
出处 《计算机工程与设计》 北大核心 2020年第1期183-189,共7页 Computer Engineering and Design
基金 河南省科技厅自然科学基金项目(162300410062) 河南省教育厅自然科学基金项目(14A510019)
关键词 智能驾驶 车道线检测 复杂路况 核Fisher线性判别分析 混沌粒子群优化算法 intelligent driving lane detection complex road conditions nuclear Fisher discriminant analysis chaotic particle swarm optimization
  • 相关文献

参考文献8

二级参考文献64

  • 1岳健,项学智.一种改进的Hough圆检测算法[J].应用科技,2006,33(6):74-76. 被引量:11
  • 2刘佳,肖晓明,彭骏驰,蔡自兴.基于改进的Laplacian算子的图像边缘检测[J].电子技术应用,2006,32(11):31-32. 被引量:8
  • 3柳平,闫川,黄显高.改进的基于Logistic映射混沌扩频序列的产生方法[J].通信学报,2007,28(2):134-140. 被引量:38
  • 4齐兴敏,尹朝庆,李智博.基于改进LDA算法的人脸识别[J].计算机与数字工程,2007,35(8):31-32. 被引量:3
  • 5Arjunan S P, Kumar D K, Naik G R. A machine learning based method for classification of fractal features of forearm S[MG using Twin Support Vector Machines [A]. 32nd Annual International Conference of the IEEE [MBS [C]. Buenos Aires, 2010:4821 -4824.
  • 6Khezri M, Jahed M. A Neuro-Fuzzy Inference System for s[MG -Based Identification of Hand Motion Commands [J]. IEEE Transactions on Industrial Electronics, 2011, 58 (05): 1952 - 1960.
  • 7Ryait H S, Arora A S, Agarwal R. Interpretations of Wrist/Grip Operations From S[MG Signals at Different Locations on Arm [J]. IEEE Transactions on Biomedical Circuits and Systems, 2010, 4 (02): 101-111.
  • 8Levi J. Englehart H K, Hudgins B. A Comparison of Surface and Intramuscular Myoelectric Signal Classification [J]. IEEE Transac tions on Biomedical Engineering, 2007, 54 (05): 847 -853.
  • 9曾齐红,毛建华,李先华,刘学锋.激光雷达点云平面拟合过滤算法[J].武汉大学学报(信息科学版),2008,33(1):25-28. 被引量:19
  • 10Sathya PD,Kayalvizhi R.PSO-based Tsallis thresholding selection procedure for image segmentation[J].International Journal of Computer Applications,2013,5(4):39-46.

共引文献180

同被引文献47

引证文献4

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部