摘要
为解决在恶劣天气、光照条件变化和路面信息干扰等情况下的车道线检测识别率低的问题,提出一种采用核Fisher线性判别分析灰度变换以及混沌粒子群的车道线检测算法。将高维的RGB彩色图像通过最佳鉴别投影向量投影到低维的子空间,通过混沌粒子群算法,根据车道线特征,遍历粒子取值范围内的空间,寻找适应度函数最大的解,根据最优解获得的直线参数在图像上拟合车道线。实验结果表明,所提算法能够实现各种道路情况下的车道线检测功能,验证了该算法具有良好的鲁棒性。
To improve the lane detection accuracy in the case of bad weather,the changing in lighting conditions,the road information interference and so on,a lane detection algorithm combining the kernel Fisher discriminant analysis gray scale transformation and chaotic particle swarm was proposed.The high-dimensional RGB color image was projected to the low-dimensional subspace using the optimal discriminant projection vector.The chaotic particle swarm algorithm was used to traverse the space within the range of the particle value according to the lane line feature,and the largest fitness function was found.The lane marking was fitted on the image according to the line parameter obtained according to the optimal solution.Experimental results demonstrate the lane marking detection can be identified using the proposed method under various road conditions with good robustness.
作者
樊超
宋雨佩
焦亚杰
FAN Chao;SONG Yu-pei;JIAO Ya-jie(College of Information Science and Engineering,Henan University of Technology,Zhengzhou 450001,China)
出处
《计算机工程与设计》
北大核心
2020年第1期183-189,共7页
Computer Engineering and Design
基金
河南省科技厅自然科学基金项目(162300410062)
河南省教育厅自然科学基金项目(14A510019)
关键词
智能驾驶
车道线检测
复杂路况
核Fisher线性判别分析
混沌粒子群优化算法
intelligent driving
lane detection
complex road conditions
nuclear Fisher discriminant analysis
chaotic particle swarm optimization