摘要
为降低特征噪声对分类性能的影响,提出一种基于极限学习机(extreme learning machine,ELM)的收缩极限学习机鲁棒算法模型(CELM)。采用自编码器对输入数据进行重构,将隐层输出值关于输入的雅克比矩阵的F范数引入到目标函数中,提取出更具鲁棒性的抽象特征表示,利用提取到的新特征对常规的ELM层进行训练,提高方法的鲁棒性。对Mnist、UCI数据集、TE过程数据集以及添加不同强度的混合高斯噪声之后的Mnist数据集进行仿真,实验结果表明,提出的方法较ELM、HELM具有更高的分类精度和更好的鲁棒性。
To reduce the influence of feature noise on classification performance,a contractive-ELM robust algorithm based on extreme learning machine(ELM)was presented.The input data were reconstructed using the autoencoder,the Frobenius norm of the Jacobian matrix of the hidden layer output about the input was introduced into the objective function,and the abstract feature representation with more robustness was extracted.The new features extracted were used to train the conventional ELM layer to improve the robustness of the method.Performance comparisons of the method were presented using Mnist dataset,UCI datasets,Tennessee Eastman process datasets and Mnist datasets with mixed Gaussian noise of different levels.Experimental results show that the proposed algorithm has higher accuracy and better robustness than ELM and HELM.
作者
陈剑挺
吴志国
叶贞成
朱远明
程辉
CHEN Jian-ting;WU Zhi-guo;YE Zhen-cheng;ZHU Yuan-ming;CHENG Hui(Key Laboratory of Advanced Control and Optimization for Chemical Processes of Ministry of Education,East China University of Science and Technology,Shanghai 200237,China;China Anhui Conch Group Limited Company,Anhui 241000,China)
出处
《计算机工程与设计》
北大核心
2020年第1期208-213,共6页
Computer Engineering and Design
基金
国家重点研发计划基金项目(2016YFB0303405)
国家杰出青年科学基金项目(61725301)
国家自然科学基金青年基金项目(61503138)
上海市自然科学基金项目(16ZR1407300)
关键词
鲁棒性
极限学习机
雅克比矩阵
自编码器
故障诊断
robustness
extreme learning machine
Jacobian matrix
autoencoder
fault diagnosis