期刊文献+

基于全局不相关的多流形学习

Multi manifold learning based on global uncorrelation
下载PDF
导出
摘要 为提升人脸识别算法的鲁棒性,减少判别信息的冗余度,提出基于全局不相关的多流形判别学习算法(UFDML)。使用特征空间到特征空间的距离,学习样本局部判别信息,提出全局不相关约束,使提取的判别特征是统计不相关的。在Yale,AR,ORL人脸库上的实验结果表明,与LPP(局部保持投影)、LDA(线性判别分析)、UDP(非监督判别投影)等人脸识别算法相比,所提算法的平均识别率高于其它算法,验证了其有效性。 To improve the robustness of face recognition algorithm and reduce the redundancy of identifying information,a discriminant learning algorithm based on global uncorrelated manifold(UFDML)was proposed.The distance of the feature space to feature space and global uncorrelated constraint were used,local discriminant information of samples was learnt to make the extracted discrimination feature statistically uncorrelated.The effectiveness of the proposed algorithm was verified through the experimental results of Yale,AR,ORL face database,which shows that the average recognition rate of the proposed algorithm is higher than that of the other face recognition algorithms such as LPP(locally preserving projection),LDA(linear discriminant analysis)and UDP(unsupervised discriminant projection).
作者 彭永康 李波 PENG Yong-kang;LI Bo(College of Computer Science and Technology,Wuhan University of Sciences and Technology,Wuhan 430065,China;Hubei Province Key Laboratory of Intelligent Information Processing and Real-Time Industrial System,Wuhan University of Sciences and Technology,Wuhan 430065,China)
出处 《计算机工程与设计》 北大核心 2020年第1期253-257,共5页 Computer Engineering and Design
基金 国家自然科学基金项目(61572381)
关键词 多流形 特征空间距离 不相关约束 人脸识别 鲁棒性 multi-manifold feature space distance uncorrelated constraints face recognition robustness
  • 相关文献

参考文献4

二级参考文献20

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部