摘要
As the Internet of things(IoT)technology is evolving,distributed solar energy resources can be operated,monitored,and controlled remotely.The design of an IoT based solar energy system for smart irrigation is essential for regions around the world,which face water scarcity and power shortage.Thus,such a system is designed in this paper.The proposed system utilizes a single board system-on-a-chip controller(the controller hereafter),which has built-in WiFi connectivity,and connections to a solar cell to provide the required operating power.The controller reads the field soil moisture,humidity,and temperature sensors,and outputs appropriate actuation command signals to operate irrigation pumps.The controller also monitors the underground water level,which is essential to prevent the pump motors from burning due to the level in the water well.The proposed system has three modes of operations,i.e.the local control mode,mobile monitoring-control mode,and fuzzy logic-based control mode.For the purpose of the proposed system validation,a prototype was designed,built,and tested.
As the Internet of things(IoT) technology is evolving, distributed solar energy resources can be operated,monitored, and controlled remotely. The design of an IoT based solar energy system for smart irrigation is essential for regions around the world, which face water scarcity and power shortage. Thus, such a system is designed in this paper. The proposed system utilizes a single board system-on-a-chip controller(the controller hereafter), which has built-in WiFi connectivity, and connections to a solar cell to provide the required operating power. The controller reads the field soil moisture, humidity, and temperature sensors, and outputs appropriate actuation command signals to operate irrigation pumps. The controller also monitors the underground water level, which is essential to prevent the pump motors from burning due to the level in the water well. The proposed system has three modes of operations, i.e. the local control mode, mobile monitoring-control mode, and fuzzy logic-based control mode. For the purpose of the proposed system validation, a prototype was designed, built, and tested.
基金
supported by the American University of Sharjah under Grant ELE/COE 490-491