摘要
为了高效地修复含孔洞的三角网格模型,提出基于内法向量与二次误差度量(QEM)的孔洞修补算法.在识别孔洞边界之后,计算边界点的凹凸性与对应夹角角度,并利用最小角-曲率原则寻找最优修补点;根据三角形生成原则以及内法向计算方法生成新的三角形完成粗修补;最后利用二次型误差滤波函数对粗修补的网格进行优化处理.在VisualStudio2013环境下,对不同种类的含孔洞模型,利用提出算法以及孔洞修补经典算法进行实验,结果表明,文中算法修补的网格质量优于对比算法.
In order to effectively repair the holes in triangular mesh model,a new algorithm of hole repairing using normal vector and quadric error metric(QEM)is proposed.After finding the hole boundary,firstly we calculate the angles between adjacent boundary edges and determine whether a vertex is concave or convex using the mesh information around the hole boundary;on this basis,we find the most suitable boundary point for repair according to the principle of minimum-angle and curvature;secondly,we complete the rough hole filling according to the principle of adding triangle and the inward normal calculation method;finally,the roughly repaired triangular mesh is further optimized by means of QEM.In Visual Studio 2013 environment,for various triangular meshes with holes,we conduct experiments using the proposed algorithm and hole-filling traditional algorithms,the experimental results show that the quality of the newly added triangle by the proposal algorithm is better than other methods.
作者
吴晓婧
寿华好
邵茂真
Wu Xiaojing;Shou Huahao;Shao Maozhen(College of Science,Zhejiang University of Technology,Hangzhou 310023)
出处
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2020年第2期239-245,共7页
Journal of Computer-Aided Design & Computer Graphics
基金
国家自然科学基金(61572430)
关键词
孔洞修补
内法向量
二次误差度量算法
hole-filling
inward normal
quadric error metric(QEM)algorithm