期刊文献+

用内法向量与二次误差度量修补三角网格孔洞 被引量:5

Triangular Mesh Hole Filling Using Inward Normal and Quadric Error Metric
下载PDF
导出
摘要 为了高效地修复含孔洞的三角网格模型,提出基于内法向量与二次误差度量(QEM)的孔洞修补算法.在识别孔洞边界之后,计算边界点的凹凸性与对应夹角角度,并利用最小角-曲率原则寻找最优修补点;根据三角形生成原则以及内法向计算方法生成新的三角形完成粗修补;最后利用二次型误差滤波函数对粗修补的网格进行优化处理.在VisualStudio2013环境下,对不同种类的含孔洞模型,利用提出算法以及孔洞修补经典算法进行实验,结果表明,文中算法修补的网格质量优于对比算法. In order to effectively repair the holes in triangular mesh model,a new algorithm of hole repairing using normal vector and quadric error metric(QEM)is proposed.After finding the hole boundary,firstly we calculate the angles between adjacent boundary edges and determine whether a vertex is concave or convex using the mesh information around the hole boundary;on this basis,we find the most suitable boundary point for repair according to the principle of minimum-angle and curvature;secondly,we complete the rough hole filling according to the principle of adding triangle and the inward normal calculation method;finally,the roughly repaired triangular mesh is further optimized by means of QEM.In Visual Studio 2013 environment,for various triangular meshes with holes,we conduct experiments using the proposed algorithm and hole-filling traditional algorithms,the experimental results show that the quality of the newly added triangle by the proposal algorithm is better than other methods.
作者 吴晓婧 寿华好 邵茂真 Wu Xiaojing;Shou Huahao;Shao Maozhen(College of Science,Zhejiang University of Technology,Hangzhou 310023)
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2020年第2期239-245,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61572430)
关键词 孔洞修补 内法向量 二次误差度量算法 hole-filling inward normal quadric error metric(QEM)algorithm
  • 相关文献

参考文献2

二级参考文献17

  • 1杜佶,张丽艳,王宏涛,刘胜兰.基于径向基函数的三角网格曲面孔洞修补算法[J].计算机辅助设计与图形学学报,2005,17(9):1976-1982. 被引量:42
  • 2张洁,岳玮宁,王楠,汪国平.三角网格模型的各向异性孔洞修补算法[J].计算机辅助设计与图形学学报,2007,19(7):892-897. 被引量:24
  • 3Davis J, Marscher S R, Garr M, et al. Filling holes in complex surfaces using volumetric diffusion[C] //Proceedings of the 1st International Symposium on 3D Data Processing Visualization, and Transmission. Los Alamitos: IEEE Computer Society Press, 2002:428-438.
  • 4Ju T. Robust repair of polygonal models[C] //Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH. New York: ACM Press, 2004:888-895.
  • 5Liepa P. Filling holes in meshes [C] //Proceedings of the Eurographics/ACM SIGGRAPH Symposium on Geometry Processing. Aire-la-Ville: Eurographies Association Press, 2003:200-205.
  • 6Zhao W, Gao S M, Lin H W. A robust hole filling algorithm for triangular mesh [J]. The Visual Computer, 2007, 23 (12) : 987-997.
  • 7Levy B. Dual domain extrapolation [C] //Computer C-raphics Proceedings, Annual Conference Series, ACM SIGGRAPH. New York: ACM Press, 2003 : 364-369.
  • 8Brunton A, Wuhrer S, Shu C, et al. Filling holes in triangular meshes by curve unfolding [C] //Proceedings of IEEE International Conference on Shape Modeling and Applications. Beijing: Institute of Electrical and Electronics Engineers Press, 2009: 66-72.
  • 9Jun Y T. A pieeewise hole filling algorithm in reverse engineering [J]. Computer-Aided Design, 2005, 37(2): 263- 270.
  • 10Nealen A, lgarashi T, Sorkine O, et al. Laplacian mesh optimization[C]//Proceedings of the 4th International Conference on Computer Graphics and Interactive Techniques in Australasia and Southeast Asia. New York: ACM Press, 2006:381-389.

共引文献16

同被引文献43

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部