期刊文献+

FEM for Blood-Based SWCNTs Flow Through a Circular Cylinder in a Porous Medium with Electromagnetic Radiation 被引量:1

FEM for Blood-Based SWCNTs Flow Through a Circular Cylinder in a Porous Medium with Electromagnetic Radiation
原文传递
导出
摘要 This work aims to study magnetohydrodynamic flow through a circular cylinder in a horizontal position of SWCNTs in blood as a base fluid in the existence of non-linear thermal radiation and heat source/sink.Three kinds of nanoparticles shapes are considered.The study is employed the finite element technique to explore and enhance the influences of essential parameters on temperature profiles and is debated the heat transport within blood injects with SWCNTs and exposes to electromagnetic radiation.The treatment with thermal analysis and heat transfer rate being a better substitute more than surgery and chemotherapy for cancer therapy.Utilizing of nanoparticles thermal features is a mounting area of nanomedicine field because of the probable for purposeful demolition of cancer cells.This remedy is relied on many parameters,including nanofluid thermal conductivity,nanoparticles volume fraction,thermal radiation and power and heat source.The numerical solutions for flow and heat transfer features are assessed for diverse governing parameters values.The obtained results are substantiated against the relevant numerical results in the published researches.Results show that both flow velocity and temperature increase for larger values of thermal radiation,heat source and SWCNTs volume fraction with lamina and cylinder shapes.Also,spherical shape of SWCNTs occurs high disturbances in velocity and temperature distribution in the case of cooled cylinder. This work aims to study magnetohydrodynamic flow through a circular cylinder in a horizontal position of SWCNTs in blood as a base fluid in the existence of non-linear thermal radiation and heat source/sink. Three kinds of nanoparticles shapes are considered. The study is employed the finite element technique to explore and enhance the influences of essential parameters on temperature profiles and is debated the heat transport within blood injects with SWCNTs and exposes to electromagnetic radiation. The treatment with thermal analysis and heat transfer rate being a better substitute more than surgery and chemotherapy for cancer therapy. Utilizing of nanoparticles thermal features is a mounting area of nanomedicine field because of the probable for purposeful demolition of cancer cells.This remedy is relied on many parameters, including nanofluid thermal conductivity, nanoparticles volume fraction,thermal radiation and power and heat source. The numerical solutions for flow and heat transfer features are assessed for diverse governing parameters values. The obtained results are substantiated against the relevant numerical results in the published researches. Results show that both flow velocity and temperature increase for larger values of thermal radiation, heat source and SWCNTs volume fraction with lamina and cylinder shapes. Also, spherical shape of SWCNTs occurs high disturbances in velocity and temperature distribution in the case of cooled cylinder.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2019年第12期1425-1434,共10页 理论物理通讯(英文版)
基金 Supported by Deanship of Scientific Research,Northern Border University under Grant No.SCI-2018-3-9-F-7614,KSA
关键词 finite element method heat transfer BLOOD SWCNTS electromagnetic radiation finite element method heat transfer blood SWCNTs electromagnetic radiation
  • 相关文献

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部