期刊文献+

Nano mesocellular foam silica(MCFs):An effective adsorbent for removing Ni2+ from aqueous solution

Nano mesocellular foam silica(MCFs):An effective adsorbent for removing Ni2+ from aqueous solution
下载PDF
导出
摘要 Nano mesocellular foam silica(MCFs)was synthesized through the hydrothermal method in this study.Powder X-ray diffraction and scanning electron microscopy were used to characterize the MCFs sample.The sample presented spherical particles and regular morphology.The results of transmission electron microscopy showed that synthesized MCFs has a three-dimensional honeycomb pore structure,which aids in the adsorption of nickel ion(Ni^2+).The results of low-temperature nitrogen gas adsorption-desorption showed that the pore diameter of the synthesized MCFs was 19.6 nm.The impacts of pH,temperature,amount of adsorbent,initial concentration of Ni^2+,and contact time on the adsorption effect of Ni^2+ by MCFs were studied.Under the optimized adsorption conditions,the adsorption rate reached 96.10%and the adsorption capacity was 7.69 mg/g.It has been determined through the study of kinetics and adsorption isotherms that the adsorption of Ni^2+ by MCFs follows the pattern of the pseudo-second-order kinetic model,simultaneously belonging to the Freundlich adsorption type.The thermodynamic results of adsorption showed that,when the temperature is between 25℃ and 45℃,the adsorption is a spontaneous exothermic reaction. Nano mesocellular foam silica(MCFs) was synthesized through the hydrothermal method in this study.Powder X-ray diffraction and scanning electron microscopy were used to characterize the MCFs sample.The sample presented spherical particles and regular morphology.The results of transmission electron microscopy showed that synthesized MCFs has a three-dimensional honeycomb pore structure,which aids in the adsorption of nickel ion(Ni2+).The results of low-temperature nitrogen gas adsorption-desorption showed that the pore diameter of the synthesized MCFs was 19.6 nm.The impacts of pH,temperature,amount of adsorbent,initial concentration of Ni2+,and contact time on the adsorption effect of Ni2+by MCFs were studied.Under the optimized adsorption conditions,the adsorption rate reached 96.10% and the adsorption capacity was 7.69 mg/g.It has been determined through the study of kinetics and adsorption isotherms that the adsorption of Ni2+ by MCFs follows the pattern of the pseudo-second-order kinetic model,simultaneously belonging to the Freundlich adsorption type.The thermodynamic results of adsorption showed that,when the temperature is between 25℃and 45℃,the adsorption is a spontaneous exothermic reaction.
出处 《Water Science and Engineering》 EI CAS CSCD 2019年第4期298-306,共9页 水科学与水工程(英文版)
基金 supported by the Natural Science Foundation of the Department of Science and Technology of Jilin Province,China(Grants No.20180101180JC,222180102051,and KYC-JC-XM-2018-051)
关键词 Nickel ion Adsorption MCFs Kinetics THERMODYNAMICS Hydrothermal method Wastewater treatment Nickelion Adsorption MCFs Kinetics Thermodynamics Hydrothermal method Wastewater treatment
  • 相关文献

参考文献1

二级参考文献3

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部