期刊文献+

晶向的各向异性对InN耿氏二极管的影响

Anisotropy Effects on The Performance of Wurtzite InN Gunn Diodes
下载PDF
导出
摘要 由于InN材料具有各向异性的特性,其电子迁移率沿c轴(Γ-A方向)和底面(Γ-M方向)不同,同时,其负微分电阻率在不同晶向上也不同。利用Farahmand Modified Caughey Thomas(FMCT)迁移率模型描述了InN材料在不同晶向上的电子输运特性,利用文中提出的参数提取方法分别提取了InN在不同晶向上的FMCT模型参数。为了将InN材料的各向异性特性应用于耿氏(Gunn)二极管的制作,使用Silvaco-atlas半导体仿真软件对纤锌矿InN n^+nn^+和n^+n^-nn^+两种结构的耿氏二极管进行数值仿真,对沿两个晶向上制作的InN耿氏二极管的输出特性进行了比较。结果表明:InN耿氏二极管沿Γ-A方向比沿Γ-M方向获得的频率和转化效率更高。InN材料沿Γ-A方向更适合制作耿氏二极管,该研究为制作InN耿氏二极管提供了参考。 The anisotropic property of InN material leads to different electron mobility in the c-axis(Γ-A direction)and along the basal plane(Γ-M direction)and the negative differential resistivity is also different in different crystal orientations.In this paper,the farahmand modified caughey thomas mobility(FMCT)model was used to describe the electron mobility in different crystal orientations and the model parameters were extracted.In order to apply the anisotropy characteristic of InN in the fabrication of Gunn diodes,numerical simulations were performed on the characteristics of wurtzite InN Gunn diodes with the two structures of n^+nn^+ and n^+n^-nn^+ with Silvaco-atlas platform.The output characteristics of the diodes along the two different crystal orientations were compared,and the results show that InN Gunn diodes along Γ-A direction obtains higher fundamental frequency and conversion efficiency than that along Γ-M direction.Thus,InN along Γ-A direction is more suitable for fabricating Gunn diode.
作者 常永明 郝跃 CHANG Yongming;HAO Yue(Department of Microelectron.,Xidian University,Xi’an 710071,CHN)
出处 《半导体光电》 CAS 北大核心 2019年第6期781-785,819,共6页 Semiconductor Optoelectronics
基金 国家自然科学基金项目(61334002)
关键词 氮化铟 各向异性 负微分迁移率 耿氏二极管 InN anisotropy negative differential mobility Gunn diode
  • 相关文献

参考文献1

二级参考文献20

  • 1Litinov V, et al. GaN based Terahertz source. Terahertz and gi- gahertz electronics and photonics II. Proc SPIE, 2010, 4111 : 116.
  • 2Saad P, Fager C, Cao H, et al. Design of a highly efficient 2-4 GHz Octave band width GaN-HEMT power amplifier. IEEE Trans MTT, 2010, 58 (7): 1677.
  • 3Esposto M, Chini A, Rajan S. Analytical model for power switch- ing GaN-based HEMT design. IEEE Trans Electron Devices,2011, 58 (5): 1456.
  • 4Heller E R, Ventury R, Green D S. Development of a versatile physics-based finite-element model of an A1GaN/GaN HEMT capable of accommodating process and epitaxy variations and a librated using multiple DC parameter. IEEE Trans Electron De- vices, 2011, 58(4): 1091.
  • 5Lenka T R, Panda A K. Role ofnanoscale A1N and InN for the mi- crowave characteristics of A1GaN/(A1, In)N/GaN-based HEMT. Semiconductors, 2011,45(5): 650.
  • 6Panda A K, Pavlidis D, Alekseev E. DC and high-frequency characteristics ofGaN-based IMPATTs. IEEE Trans Electron De- vices, 2001, 48:820.
  • 7Panda A K, Pavlidis D, Alekseev E. Noise characteristics of GaN-based IMPATTs. IEEE Trans Electron Devices, 2001, 48: 1473.
  • 8Albrecht J D, Wang R P, Ruden P P, et al. Electronic transport characteristics of GaN for high temperature device modeling. J Appl Phys, 1998, 83(9): 4777.
  • 9Yang L A, Hao Y, Yao Q, et al. Improved negative differential mobility model of GaN and A1GaN for a Terahertz Gunn diode. IEEE Trans Electron Devices, 2011, 58(4): 1076.
  • 10Lau K S, Tozer R C, David J P R, et al. Double transit region Gunn diodes. Semicond Sci Technol, 2007, 22:245.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部