期刊文献+

基于机器学习的装配质量图像识别研究 被引量:3

Research on Assembly Quality Image Recognition Based on Machine Learning
下载PDF
导出
摘要 针对柔性化生产线上人工装配过程中装配质量的检测问题,提出基于机器学习的装配图像识别方法。首先设计整体方案,采用普通工业相机结合图像识别软件的方式,构建硬件系统并开发软件模块。接着利用监督算法通过训练分类器实现图像识别。测试各算法方案并比较图像识别准确率、训练和分类耗时以及训练所需数据量,选取效果较好的算法方案。然后研究训练数据扩展方法,以降低训练图片数量并提高识别正确率。结果表明:采用合适算法方案的装配图像识别系统能满足工业应用需要。 In order to detect assembly quality during manual assembly process on the flexible production line,this paper presents an assembly image recognition method based on machine learning.Firstly,the overall scheme is designed,the hardware system is built and the software module is developed by using the common industrial camera combined with the image recognition software.Image recognition is then performed by training classifier using supervised algorithms.According to the test results of each algorithm scheme,the image recognition accuracy,training and classification time-consuming and the amount of data required for training are compared,and the best scheme is selected.Then the training data expansion method is studied to reduce the number of training pictures and improve the recognition accuracy.The results show that the assembly image recognition system with suitable algorithm scheme can meet the needs of industrial use.
作者 薛未业 王家海 XUE Wei-ye;WANG Jia-hai(CDHK,Tongji University,Shanghai 201804,China;School of Mechanical Engineering,Tongji University,Shanghai 201804,China)
出处 《佳木斯大学学报(自然科学版)》 CAS 2020年第1期75-79,共5页 Journal of Jiamusi University:Natural Science Edition
关键词 智能装配系统 图像识别 机器学习 监督算法 intelligent assembly system image recognition machine learning supervised algorithm
  • 相关文献

参考文献3

二级参考文献41

  • 1龙卫江,张文修.基于相近原则的半指导直推学习机及其增量算法[J].应用数学学报,2006,29(4):619-632. 被引量:2
  • 2Stanford, V. 2002. Using pervasive computing to deliver elder care[J]. IEEE Pervasive Computing, 2002: 10-13.
  • 3Kidd, C. D., Orr, R., Abowd, G. D., etal. The aware home: a living laboratory for ubiquitous computing research[C]//Proceedings of the Second International Workshop on Cooperative Buildings, 1992:191-198.
  • 4S. Intille, K. Larson, E. Tapia, et al. Using a live-in laboratory for ubiquitous computing research [M]. LNCS Springer-Verlag, 2006.
  • 5Guan, D. H., Yuan, W. W., Lee, Y. K., et al. Activity recognition based on semi-supervised learning [C]//Proceedings of 13th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications, Daegu, Korea, 2007: 469-475.
  • 6Donghai Guan, Young-Koo Lee, Sungyoung Lee, Activity Recognition with the Aid of Unlabeled Samples [C]//Proceedings of the 3rd International Conference on Ubiquitous Information Management and Communication (ICUIMC'09), Korea, 2009:720-724.
  • 7Blum, A. , Mitchell, T. Combining labeled and unlabeled data with co-training[C]//Proceedings of llth Annual Conf. Computational Learning Theory, Madison, Wisconsin, 1998 : 92 - 100.
  • 8Stillman, S., Tanawongsuwan, R., Essa, I. A system for tracking and recognizing multiple people with multiple cameras[C]//Proceedings of the Second International Conference on Audio-Vision-based Person Authentication, Washington, DC,1999.
  • 9Bao, L. Physical activity recognition from acceleration data under seminaturalistic conditions[D]. M. Eng thesis, EECS, Massachusetts Institute of Technology, 2003.
  • 10Abowd, G. D. Director of the AwareHome initiative [D]. Georgia Insitute of Technology, 2002.

共引文献90

同被引文献36

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部