期刊文献+

Heisenberg型群上的广义Picone恒等式及其应用 被引量:6

Generalized Picone’s Identity and Its Applications for the Heisenberg-Type Group
下载PDF
导出
摘要 利用Heisenberg型群上p-退化椭圆算子的广义Picone恒等式给出了Hardy不等式、Sturmiam比较原理、Liouville型定理和主特征值的单调性结论.讨论了具有奇异项的拟线性方程的弱解问题. This paper establishes a generalized version of the Picone s identity of p-degenerated elliptic operators for the Heisenberg-type group.As applications,Hardy-type inequality,Sturmian comparison principle,a Liouville-type theorem and the strict monotonicity of the principal eigenvalue are given.The weak solution of the quasi-linear system with singular nonlinearity is also studied.
作者 王胜军 窦井波 WANG Sheng-jun;DOU Jing-bo(School of Mathematics and Statistics,Qinghai Normal University,Xining 810008,China;School of Mathematics and Information Science,Shaanxi Normal University,Xi an 710119,China)
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第2期48-54,共7页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金项目(11571268) 青海省科技厅应用基础研究项目(2017-ZJ-768)
关键词 Heisenberg型群 广义Picone恒等式 HARDY不等式 Sturmiam比较原理 LIOUVILLE型定理 Heisenberg-type group generalized Picone s identity Hardy-type inequality Sturmian comparison principle Liouville-type theorem
  • 相关文献

参考文献4

二级参考文献26

  • 1Kaplan A. Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms. Trans. Amer. Math. Soc, 1980, 258: 147-153.
  • 2Garofalo N and Lanconelli E. Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation. Ann. Inst. Fourier, Grenoble, 1990, 40(2): 313-356.
  • 3Niu P, Zhang H and Wang Y. Hardy type and Rellich type inequalities on the Heisenberg group.Proc. Amer. Math. Soc, 2001, 129(12): 3623-3630.
  • 4Garofalo N and Vassilev D. Regularity near the characteristic set in the non-linear Dirichlet problem and conformal geometry of sub-Laplacian on Carnot groups. Math. Ann, 2000, 318: 453-516.
  • 5Garofalo N and Vassilev D. Symmetry properties of positive entire solutions of Yamabe-type equations on groups of Heisenberg type. Duke Mathematical Journal, 2001, 106(3): 411-448.
  • 6Capogna L, Danielli D and Garofalo N. Capacitary estimates and the local behavior of solutions of nonlinear subelliptic equations. Amer. J. Math, 1997, 118: 1153-1196.
  • 7Hormander L. Hypoelliptic second order differential equations. Acta Math, 1967, 119: 147-171.
  • 8Davies E B. Spectral Theory and Differential Operators. Cambridge Univ. Press, Cambridge,UK, 1996.
  • 9VAZQUEZ J L.A strong maximum principle for some quasilinear elliptic equations[J].Appl.Math.Optim.,1984,12(3):191-202.
  • 10PUCCI P,SERRIN J,ZOU Heng-hui.A strong maximum principle and a compact support principle for singular elliptic inequalities[J].J.Math.Pures Appl.,1999,78(8):769-789.

共引文献9

同被引文献17

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部