期刊文献+

全钒液流电池系统漏电功率影响因素研究 被引量:1

Factors affecting leakage power of all-vanadium redox flow battery system
下载PDF
导出
摘要 基于Simulink仿真平台,建立了多电堆串联运行全钒液流电池系统漏电回路等效模型,分析了电堆内串联单电池数量、系统盘管等效电阻、系统串联电堆数量以及系统开路电压等因素对系统整体漏电功率的影响规律及变化情况。仿真结果表明,电堆内串联单电池数量越少、系统盘管等效电阻越大、系统串联电堆数量越少、系统开路电压越小,系统整体漏电功率越小,但漏电功率的变化速率随上述各种因素的变化各有差异。该研究为全钒液流电池的多电堆串联运行系统的优化设计及风险防范提供了参考依据。 The equivalent model of leakage circuit for multi-stack all-vanadium flow battery system was established based on Simulink.The factors were analyzed,such as the number of series cells in the stack,the equivalent resistance of the coiled pipe in the system,the number of series stacks in the system and the open circuit voltage(OCV).The simulation results show that the smaller the number of series cells in the stack,the larger the equivalent resistance of the coiled pipe in the system,the smaller the number of series stacks in the system,and the smaller the OCV of the system,the smaller the overall leakage power of the system.However,the changing rate of leakage power varies with the mentioned factors.It provides a reference for the design optimization and risk prevention of multi-stack all-vanadium flow battery system.
作者 张蓉蓉 刘宗浩 周博然 孙恺 史松杰 ZHANG Rong-rong;LIU Zong-hao;ZHOU Bo-ran;SUN Kai;SHI Song-jie(Dalian Conspark Energy Co.,Ltd.,Dalian Liaoning 116025,China;Dalian Rongke Power Co.,Ltd.,Dalian Liaoning 116025,China;Dalian Electric Power Company,State Grid Liaoning Electric Power Co.,Ltd.,Dalian Liaoning 116023,China;Electric Power Research Institute of State Grid Liaoning Electric Power Co.,Ltd.,Shenyang Liaoning 110006,China)
出处 《电源技术》 CAS 北大核心 2020年第1期90-94,共5页 Chinese Journal of Power Sources
基金 国家电网公司总部科技项目 国家电网公司科技项目(2018ZX-10)
关键词 全钒液流电池 仿真 漏电功率 系统优化 all-vanadium redox flow battery simulation leakage power system optimization
  • 相关文献

参考文献4

二级参考文献43

  • 1蔡年生.双极堆式电池中的漏电电流[J].电池,1993,23(5):234-237. 被引量:11
  • 2王震坡,孙逢春,林程.不一致性对动力电池组使用寿命影响的分析[J].北京理工大学学报,2006,26(7):577-580. 被引量:134
  • 3Tokuda N , Kumamoto T , Shigematsu T , et al. Development of a redox flow battery system[J]. SEI Technical Review, 1998, 11(45): 88-94.
  • 4Shibata A, Sato K. DeVelopment of vanadium redox flow battery for electricity storage[J]. Journal of Power Engineering, 1999, 13(3): 130-135.
  • 5Skyllas Kazacos M, McDermott R, Vanadium charging cell and vanadium dual battery system[R]. AU: 2815289, 1998-07- 051.
  • 6Rychcik M, Skyllas Kazacos M. Characteristics of new all-vanadium redox flow battery[J]. Journal Power Sources, 1988(22): 59-67.
  • 7Skyllas Kazacos M, Kasherman D, Hong R, et al. Characteristics and performance of lkW vanadium redox battery[J]. Journal of Power Sources, 1991(35): 399-404.
  • 8Stalnaker D K, Lieberman A. Design and assembly considerations for redox cells and stacks[R]. DOE/ NASA/12726-10, NASATM-82672, 1981.
  • 9Norman Hagedorn, Hoberecht M A. NASA redox cell stack shunt current, pumping power, and cell performance tradeoffs[R]. Final Report(NASA), DOE/NASA/12726- 11, NASATM-82686, 1982.
  • 10Codina G, Aldaz A. Scale-up studies of an Fe/Cr redox flow battery based on shunt current analysis[J]. Journal of Applied Electrochemistry, 1992, 22(7): 668-674.

共引文献254

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部