期刊文献+

非编码RNA与血脂代谢的研究进展 被引量:3

Research progress on non-coding RNA and blood lipid metabolism
下载PDF
导出
摘要 冠心病的主要病理学基础是动脉粥样硬化,其发生发展是多因素、多步骤的,也是遗传和环境因素交互作用的结果。除年龄、性别、肥胖、吸烟、高血压、糖尿病等因素外,血脂代谢异常是促进动脉粥样硬化发生发展的重要因素。越来越多的证据表明非编码RNA参与调控过程,在血脂代谢和动脉粥样硬化的形成过程中发挥重要作用,特别是使用小干扰RNA(small interfering RNA,siRNA)从RNA水平调控血脂的RNA干扰(RNA interfering,RNAi)技术,不仅在动物实验上获得了明显的降脂效果,而且在临床试验上也取得了明显疗效。本文从非编码RNA的水平总结血脂代谢的影响因素及相关干预手段。 Atherosclerosis is the main pathological basis of coronary heart disease. It is a complicated progress involved many factors,and the result of the interaction between genetic and environmental factors.In addition to factors such as age,gender,obesity,smoking,hypertension and diabetes,abnormal lipid metabolism is a particularly important factor in promoting the development of atherosclerosis.Nowadays,there is increasing evidence that non-coding RNA is involved in the regulation process and plays an important role in the lipid metabolism and formation of atherosclerosis. Especially,the RNA interference(RNAi)using small interfering RNA(siRNA)has achieved significant lipid-lowering effects not only in animal experiments,but also in clinical trials.This article reviewed influencing factors of lipid metabolism and related interventions on non-coding RNA level.
作者 林振浩 唐敏娜 胡嘉禄 颜彦 LIN Zhen-hao;TANG Min-na;HU Jia-lu;YAN Yan(Department of Cardiology,Zhongshan Hospital,Fudan University,Shanghai 200032,China)
出处 《复旦学报(医学版)》 CAS CSCD 北大核心 2020年第1期122-127,共6页 Fudan University Journal of Medical Sciences
基金 国家自然科学基金(81700441)~~
关键词 非编码RNA 血脂代谢 动脉粥样硬化 non-coding RNA lipid metabolism atherosclerosis
  • 相关文献

参考文献1

二级参考文献24

  • 1Nigro JM, Cho KR, Fearon ER, Kern SE, Ruppert JM, Oliner JD, et al. Scrambled exons. Cell 1991;64:607 13.
  • 2Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, et al. Natural RNA circles function as efticient microRNA sponges. Nature 2013:495:384 8.
  • 3Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013;495:333 8.
  • 4Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, et al. Exon- intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Bioi 2015;22:256-64.
  • 5Jeck WR, Sharpless NE. Detecting and characterizing circular RNAs. Nat Biotechnol 2014;32:453-61.
  • 6Lasda E, Parker R. Circular RNAs: diversity of form and function. RNA 2014:1829-42.
  • 7Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 2013;19:141-57.
  • 8Chen I, Chen CY, Chuang TJ. Biogenesis, idenlification, and function of exonic circular RNAs. Wiley lnterdiscip Rev RNA 2015;6:563-79.
  • 9lvanov A, Memczak S, Wyler E, Torti F, Porath HT, Orejuela MR, et al. Analysis of intron sequences reveals halhnarks of circular RNA biogenesis in animals. Cell Rep 2015;10:170-7.
  • 10Cheng J, Metge F Dieterich C. Specific identification and quantification of circular RNAs from sequencing data. Bioinformatics 2016;32:1094-6.

共引文献13

同被引文献24

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部