期刊文献+

金纳米颗粒作用下全α型蛋白质构象转变过程研究 被引量:3

Effect of Au-nanoparticles on the conformational transition of all-α protein
下载PDF
导出
摘要 目的:研究金纳米颗粒的尺寸对全α型蛋白质1BBL的结构稳定性及构象转变过程的影响。方法:利用NAMD软件构建纳米颗粒和蛋白质相互作用模型,采用分子动力学对体系进行模拟。结果:对纳米颗粒和蛋白质复合体系的能量及蛋白质的结构进行分析表明,随着组成纳米颗粒尺寸的增加,金原子数目增多,蛋白质的结构稳定性减弱,蛋白质内部的氢键数目减少,回转半径增加,并伴有二级结构的转变。结论:对金纳米颗粒和蛋白质相互作用体系的研究,为理解蛋白质在纳米颗粒作用下的结构特征和动力学行为提供了理论支持。 Aims: This paper aims to study the effect of Au-nanoparticles on the structural stability and conformational transition of the all-α protein 1 BBL. Methods: The simulation models were constructed by the NAMD software package. MD simulations were performed to investigate the Protein-NPs system. Results: According to the analysis of the energy and structural information, it was concluded that the conformational stability was weakened and the number of intra-protein hydrogen bonds was decreased with the increasing size of the nanoparticles. The radius of gyration R_g increased due to the more pair interactions between the atoms of the naonparticle and the ones of the protein. Our simulation results also clearly captured the structural transitions of the protein sample from helix to turn or random coil conformation induced by the increasing size of the Au-nanoparticles. Conclusions: The research conclusions provide a theoretical realization of understanding the conformational feature and the dynamic behavior of the protein with the effect of nanoparticles.
作者 游乐 姜舟婷 YOU Le;JIANG Zhouting(College of Sciences,China Jiliang University,Hangzhou 310018,China)
出处 《中国计量大学学报》 2019年第4期499-505,共7页 Journal of China University of Metrology
基金 国家自然科学基金项目(No.21873087)
关键词 计量 分子动力学模拟 金纳米粒子 全α型蛋白质 measurement molecular dynamics simulation Au-nanoparticle all-αprotein
  • 相关文献

参考文献3

二级参考文献103

  • 1Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183.
  • 2Rozhkov, A. V.; Giavaras, G.; Bliokh, Y. P.; Freilikher, V.; Nori, F. Phys. ReD. 2011, 503, 77.
  • 3Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.
  • 4Gu, X. G.; Yang, G.; Zhang, G. X.; Zhang, D. Q.; Zhu, D. B. ACS Appl. Mat. Interfaces 2011, 3, 1175.
  • 5Schniepp, H. C,; Li, J. L.; McAllister, M. J.; Sai, H.; Herrera-Alonso, M.; Adamson, D. H.; Prud'homme, R. K.; Car, R.; Saville, D. A.; Aksav, I. A. J. Phys. Chem. B 2006, 110, 8535.
  • 6Liu, Y.; Yu, D. S.; Zeng, C.; Miao, Z. C.; Dai, L. M. Langmuir 2010, 26, 6158.
  • 7Yan, X. B.; Chen, J. T.; Yang, J.; Xue, Q. J.; Miele, EACSAppl. Mat. Interfaces 2010, 2, 2521.
  • 8Zhang, L. M.; Xia, J. G.; Zhao, Q. H.; Zhang, Z. J. Small 2010, 4, 537.
  • 9Yang, X. Y.; Zhang, X. Y.; Liu, Z. F.; Ma, Y. F.; Huang, Y.; Chen, Y. S..I. Phys. Chem. C2008~ 112, 17554.
  • 10Yang, K.; Zhang, S.; Zhang, G. X.; Sun, X. M.; Lee, S. T.; Liu, Z. Nano Lett. 2010, 10, 3318.

共引文献11

同被引文献6

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部