摘要
研究Sándor-Yang平均R AQ(或R QA)关于算术平均A与二次平均Q的几何组合的序关系,得到两个精确双向不等式:Q^α1(a,b)A^(1-α1)a,b<R QA a,b<Q^β1(a,b)A^(1-β1)(a,b)和Q^α2(a,b)A^(1-α2)(a,b)<R AQ(a,b)<Q^β2(a,b)A^(1-β2)(a,b)对所有a,b>0且a≠b成立的充要条件是α1≤2/3、β1≥0.7111L,α2≤1/3和β2≥0.3807L。
This paper study the order relation of geometric combinations of arithmetic mean A and quadratic mean Q for Sándor-Yang mean R AQ(or R QA),and two optimal double inequalities for Sándor-Yang mean are found:Q^α1(a,b)A^(1-α1)a,b<R QA a,b<Q^β1(a,b)A^(1-β1)(a,b)和Q^α2(a,b)A^(1-α2)(a,b)<R AQ(a,b)<Q^β2(a,b)A^(1-β2)(a,b)The necessary and sufficient conditions for all of a,b>0 and a≠b areα1≤2/3,β1≥0.7111L,α2≤1/3 andβ2≥0.3807L.
作者
王君丽
李少云
徐会作
WANG Jun-li;LI Shao-yun;XU Hui-zuo(School of Adult Education,Taizhou Vocational College of Science&Technology,Taizhou 318020,China;Teachers Teaching Development Center,Wenzhou Broadcast and TV University,Wenzhou 325000,China;Lifelong Education Guidance Center,Wenzhou Broadcast and TV University,Wenzhou 325000,China)
出处
《湖州职业技术学院学报》
2019年第3期38-41,共4页
Journal of Huzhou Vocational and Technological College
基金
2018年度浙江省现代远程教育学会重点课题“完全椭圆积分和平均值不等式研究”(DES-18204)的研究成果之一