期刊文献+

基于Word Embedding的遥感影像检测分割 被引量:6

Remote Sensing Image Detection and Segmentation Based on Word Embedding
下载PDF
导出
摘要 遥感影像检测分割技术通常需提取影像特征并通过深度学习算法挖掘影像的深层特征来实现.然而传统特征(如颜色特征、纹理特征、空间关系特征等)不能充分描述影像语义信息,而单一结构或串联算法无法充分挖掘影像的深层特征和上下文语义信息.针对上述问题,本文通过词嵌入将空间关系特征映射成实数密集向量,与颜色、纹理特征的结合.其次,本文构建基于注意力机制下图卷积网络和独立循环神经网络的遥感影像检测分割并联算法(Attention Graph Convolution Networks and Independently Recurrent Neural Network,ATGIR).该算法首先通过注意力机制对结合后的特征进行概率权重分配;然后利用图卷积网络(GCNs)算法对高权重的特征进一步挖掘并生成方向标签,同时使用独立循环神经网络(IndRNN)算法挖掘影像特征中的上下文信息,最后用Sigmoid分类器完成影像检测分割任务.以胡杨林遥感影像检测分割任务为例,我们验证了提出的特征提取方法和ATGIR算法能有效提升胡杨林检测分割任务的性能. Remote sensing image detection and segmentation technology usually needs to extract image features and mine the deep features of images through deep learning algorithm.However,traditional imaging features(e.g.,color,texture,spatial relationship) cannot fully reflect the semantic information of the images,while single/sequential algorithm cannot fully exploit the deep features and the contextual semantic information of the images.Aiming at the above challenges,in this paper,the spatial relation features are mapped into real dense vectors by word embedding,which are combined with color and texture features.Further,we propose a new parallel algorithm referred to as attention graph convolution networks and independently recurrent neural network(ATGIR) based on graph convolution network and independent recurrent neural network under attention mechanism for remote sensing image detection and segmentation.Our algorithm first assigns probabilistic weights to the combined features based on attention mechanism;then extracts deep features based on the features with high weights to generate labels with directions by using graph convolution network(GCNs) algorithms,extracts contextual semantic information of the images by using the independently recurrent neural network(IndRNN) algorithm;finally,our algorithm realizes image detection and segmentation by using Sigmoid.For remote sensing image detection and segmentation of populous euphratica forest as an instance,we prove that our feature extraction method and proposed ATGIR algorithm can effectively improve the detection and segmentation tasks.
作者 尤洪峰 田生伟 禹龙 吕亚龙 YOU Hong-feng;TIAN Sheng-wei;YU Long;LüYa-long(School of Information Science and Engineering,Xinjiang University,Urumqi,Xinjiang 830046,China;Software College,Xinjiang University,Urumqi,Xinjiang 830046,China;Network Center,Xinjiang University,Urumqi,Xinjiang 830046,China)
出处 《电子学报》 EI CAS CSCD 北大核心 2020年第1期75-83,共9页 Acta Electronica Sinica
基金 新疆维吾尔自治区自然科学基金(No.2016D01C050) 新疆自治区科技人才培养(No.QN2016YX0051)
关键词 注意力机制 图卷积网络 独立循环神经网络 并联算法 词嵌入 attention mechanism GCNs IndRNN parallel algorithm word embedding
  • 相关文献

参考文献3

二级参考文献23

  • 1马国锐,李平湘,秦前清.基于融合和广义高斯模型的遥感影像变化检测[J].遥感学报,2006,10(6):847-853. 被引量:32
  • 2Gong M,Zhou Z,Ma J.Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering[J].IEEE Transactions on Image Processing,2012,21(4):2141-2151.
  • 3Bruzzone L,Prieto D F.Automatic analysis of the difference image for unsupervised change detection[J].IEEE Transactions on Geoscience and Remote Sensing,2000,38(3):117l-l182.
  • 4Bazi Y,Bruzzone L,Melgani F.An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images[J].IEEE Transactions on Geoscience and Remote Sensing,2005,43(4):874-887.
  • 5Ghosh A,Mishra N S,Ghosh S.Unsupervised change detection of remotely sensed images using fuzzy clustering[A].Proceedings of the Seventh International Conference on Advances in Pattern Recognition[C].USA:IEEE,2009.385-388.
  • 6Celik T.Unsupervised change detection in satellite images using principal component analysis and k-means clustering[J].IEEE Geoscience and Remote Sensing Letters,2009,6(4):772-776.
  • 7Bazi Y,Bruzzone L,Melgani F.An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images[J].IEEE Transactions on Geoscience and Remote Sensing,2005,43(4):874-887.
  • 8Dekker R J.Speckle filtering in satellite SAR change detection imagery[J].International Journal of Remote Sensing,1998,19(6):1133-1146.
  • 9Zhang D Q,Chen S C.Fuzzy clustering using kernel methods[A].Proceedings of International Conference on Control and Automation[C].Xiamen:IEEE,2002.123-127.
  • 10Kim D W,Lee K Y,Lee D,et al.Evaluation of the performance of clustering algorithms in kernel-induced feature space[J].Pattern Recognition,2005,38(4):607-611.

共引文献38

同被引文献33

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部