期刊文献+

基于序列格的隐私时序模式挖掘方法 被引量:9

Private Time Series Pattern Mining with Sequential Lattice
下载PDF
导出
摘要 基于差分隐私的时间序列模式挖掘方法中,序列的最大长度以及添加拉普拉斯噪声的多少直接制约着挖掘结果的可用性.针对现有时间序列模式挖掘方法全局敏感度过高、挖掘结果可用性较低的不足问题,提出了一种基于序列格的差分隐私下时间序列模式挖掘方法PrivTSM(Differentially Private Time Series Pattern Mining).该方法首先利用最长路径的策略对原始数据库进行截断处理;在此基础上,采用表连接操作生成满足差分隐私的序列格;结合序列格结构本身的特性,合理分配隐私预算,提高输出模式的可用性.理论分析表明PrivTSM方法满足ε-差分隐私,基于真实数据库上实验结果表明,PrivTSM方法的准确率TPR(True Postive Rate)和平均相对误差ARE(Average Relative Error)明显优于N-gram和Prefix-Hybrid方法. Many methods of differentailly private time series pattern mining have been proposed,while in those methods,the length of sequence pattern and Laplace noise directly constrain the utility of the mining results.To address the questions caused by the global query sensitivity and lower utility of the existing works,an efficient method,called PrivTSM(differentially Private Time Series Pattern Mining) is proposed,which is based on sequence lattice for mining time series pattern with differential privacy.This method relies on the longest path strategy to truncate the original database;based on the truncated database,this method uses the table join operation to construct a differentially private sequence lattice.Furthermore,this method uses the property of the sequence lattice structure itself to allocate privacy budget reasonably and boost the accuracy of the noisy counts.PrivTSM satisfies ε-differential privacy through theoretical analysis.The experimental results on real datasets show that the accuracy(TPR) and average relative error(ARE) of the PrivTSM are better than those of the N-gram and Prefix-Hybrid algorithms.
作者 彭慧丽 金凯忠 付聪聪 付楠 张啸剑 PENG Hui-li;JIN Kai-zhong;FU Cong-cong;FU Nan;ZHANG Xiao-jian(School of Computer&Information Engineering,Henan University of Economics and Law,Zhengzhou,Henan 450002,China;School of Information Engineering,Henan Radio&Television University,Zhengzhou,Henan 450046,China)
出处 《电子学报》 EI CAS CSCD 北大核心 2020年第1期153-163,共11页 Acta Electronica Sinica
基金 国家自然科学基金(No.61502146,No.91646203,No.91746115,No.61772131,No.61702161) 河南省自然科学基金(No.162300410006) 河南省科技攻关项目(No.162102310411) 河南省教育厅高等学校重点科研项目(No.16A520002) 河南省高等学校青年骨干教师培养计划(No.2017GGJS084) 河南财经政法大学青年拔尖人才资助计划
关键词 差分隐私 时间序列 全局敏感度 数据挖掘 数据截断 序列格 differential privacy time series global sensitivity data mining data truncate sequential lattice
  • 相关文献

参考文献3

二级参考文献38

  • 1Blum A,Dwork C,McSherry F,et al.Practical Privacy:The SuLQ Framework[C] //24th ACM SIGMOD International Conference on Management of Data / Principles of Database Systems,Baltimore (PODS 2005).Baltimore,Maryland,USA,June 2005.
  • 2Dwork C.Differential Privacy[C] //33rd International Colloquium on Automata,Languages and Programming,part Ⅱ (ICALP 2006).Venice,Italy,Springer Verlag,July 2006.
  • 3Dwork C.Differential Privacy:A Survey of Results[C] //Theory and Applications of Models of Computation(TAMC2008).Xi'an,China,Springer Verlag,April 2008.
  • 4Dwork C.The Differential Privacy Frontier[C] //6th Theory of Cryptography Conference (TCC 2009).San Francisco,CA,Springer Verlag,March 2009.
  • 5Dwork C.Differential Privacy in New Settings[C] //Symposium on Discrete Algorithms (SODA),Society for Industrial and Applied Mathematics.Austin,TX,January 2010.
  • 6Dwork C.A Firm Foundation for Private Data Analysis[J].Communications of the ACM,2011,54 (1):86-95.
  • 7Dwork C.The Promise of Differential Privacy.A Tutorial on Algorithmic Techniques[C] // 52nd Annual IEEE Symposium on Foundations of Computer Science.Palm Springs,CA,October 2011.
  • 8Agrawal R,Strikant R.Privacy-preserving data mining[C] //Proceedings of the 2000 ACM SIGMOD International Conference on Managementof Data.Dallas,Texas,May 2000:439-450.
  • 9Sweeney L.K-anonymity:A Model for Protecting Privacy[J].International Journal on Uncertainty[J].Fuzziness and Knowledge-based Systems,2002,10 (5):557-570.
  • 10Lindell Y,Pinkas B.Privacy preserving data mining[C] // Proceedings of the 20th Annual International Cryptology Conference on Advances in Cryptology.Santa Barbara,California,August 2000:36-54.

共引文献195

同被引文献89

引证文献9

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部