摘要
基于差分隐私的时间序列模式挖掘方法中,序列的最大长度以及添加拉普拉斯噪声的多少直接制约着挖掘结果的可用性.针对现有时间序列模式挖掘方法全局敏感度过高、挖掘结果可用性较低的不足问题,提出了一种基于序列格的差分隐私下时间序列模式挖掘方法PrivTSM(Differentially Private Time Series Pattern Mining).该方法首先利用最长路径的策略对原始数据库进行截断处理;在此基础上,采用表连接操作生成满足差分隐私的序列格;结合序列格结构本身的特性,合理分配隐私预算,提高输出模式的可用性.理论分析表明PrivTSM方法满足ε-差分隐私,基于真实数据库上实验结果表明,PrivTSM方法的准确率TPR(True Postive Rate)和平均相对误差ARE(Average Relative Error)明显优于N-gram和Prefix-Hybrid方法.
Many methods of differentailly private time series pattern mining have been proposed,while in those methods,the length of sequence pattern and Laplace noise directly constrain the utility of the mining results.To address the questions caused by the global query sensitivity and lower utility of the existing works,an efficient method,called PrivTSM(differentially Private Time Series Pattern Mining) is proposed,which is based on sequence lattice for mining time series pattern with differential privacy.This method relies on the longest path strategy to truncate the original database;based on the truncated database,this method uses the table join operation to construct a differentially private sequence lattice.Furthermore,this method uses the property of the sequence lattice structure itself to allocate privacy budget reasonably and boost the accuracy of the noisy counts.PrivTSM satisfies ε-differential privacy through theoretical analysis.The experimental results on real datasets show that the accuracy(TPR) and average relative error(ARE) of the PrivTSM are better than those of the N-gram and Prefix-Hybrid algorithms.
作者
彭慧丽
金凯忠
付聪聪
付楠
张啸剑
PENG Hui-li;JIN Kai-zhong;FU Cong-cong;FU Nan;ZHANG Xiao-jian(School of Computer&Information Engineering,Henan University of Economics and Law,Zhengzhou,Henan 450002,China;School of Information Engineering,Henan Radio&Television University,Zhengzhou,Henan 450046,China)
出处
《电子学报》
EI
CAS
CSCD
北大核心
2020年第1期153-163,共11页
Acta Electronica Sinica
基金
国家自然科学基金(No.61502146,No.91646203,No.91746115,No.61772131,No.61702161)
河南省自然科学基金(No.162300410006)
河南省科技攻关项目(No.162102310411)
河南省教育厅高等学校重点科研项目(No.16A520002)
河南省高等学校青年骨干教师培养计划(No.2017GGJS084)
河南财经政法大学青年拔尖人才资助计划
关键词
差分隐私
时间序列
全局敏感度
数据挖掘
数据截断
序列格
differential privacy
time series
global sensitivity
data mining
data truncate
sequential lattice