期刊文献+

水稻CIPK基因家族的鉴定及OsCIPK5受稻瘟病菌诱导的qRT-PCR分析 被引量:5

Identification of CIPK Family in Rice and qRT-PCR Analysis on OsCIPK5 Induced by Magnaporthe oryzae
下载PDF
导出
摘要 【目的】植物通过启动一系列信号传导过程来应对外部环境,这些过程通常涉及多种蛋白激酶,包括钙调神经磷酸酶B样蛋白互作激酶(calcineurin B-like protein-interacting protein kinases, CIPKs)。为更加清晰全面地了解水稻CIPK基因家族,本研究根据最新的基因组测序数据对水稻基因组中的CIPKs进行了鉴定。【方法】通过探讨拟南芥和水稻中CIPKs蛋白家族的结构特点,结合生物信息学和qRT-PCR技术系统分析水稻中CIPKs家族蛋白的结构。结合转录组数据,比较了粳稻云引受稻瘟病菌诱导后的表达情况。【结果】根据最新的水稻基因组数据,鉴定出31个水稻OsCIPK基因。系统发育树分析结果表明,31个OsCIPK基因可分为5个亚家族,这些亚家族具有不同的外显子-内含子和UTR的结构特点。从广谱抗稻瘟病品种粳稻云引受稻瘟病菌诱导的基因表达谱的趋势聚类中筛选出了OsCIPK5基因并对其进行了表达分析,结果表明,云引中OsCIPK5基因受稻瘟病菌的诱导表达。【结论】内含子缺失和片段重复在水稻OsCIPK基因家族的扩展中起到重要作用,同时OsCIPK5受到稻瘟病菌的诱导表达。 【Objective】 The family of calcineurin B-like protein-interacting protein kinase genes(CIPKs) in rice was studied using the latest sequencing data to further understand the signal transduction involving a variety of kinases in plants in respond to environmental changes. 【Methods】 The structures of CIPKs in Arabidopsis thaliana and rice were analyzed. Combining the bioinformatics and qRT-PCR technology, expressions of the CIPK familie and that of the genes induced by M. grisea in Japonica rice cv. ’Yunyin’ were compared. 【 Results】 A total of 31 OsCIPK genes were identified in the rice genome databank. The phylogenetic tree analysis showed that these 31 OsCIPKs could be divided into 5 subfamilies, which had different structural characteristics of exon-intron and UTR. The expression of OsCIPK5, which was selected from a trend cluster of the gene expressiong profile of ’Yunyin’ induced by M. grisea, could be induced by M. grisea. 【Conclusions】 It appeared that the intron deletion and fragment duplication played an important role in the expansion of OsCIPK family in rice,and that OsCIPK5 expression was induced in ’Yunyin’ by M. grisea.
作者 喻丝丝 罗曦 连玲 许惠滨 陈丽萍 魏毅东 蔡秋华 谢华安 张建福 YU Si-si;LUO Xi;LIAN Ling;XU Hui-bin;CHEN Li-ping;WEI Yi-dong;CAI Qiu-hua;XIE Hua-an;ZHANG Jian-fu(College of Agriculture,Fujian Agriculture and Forestry University,Fuzhou,Fujian 350002,China;Rice Research Institute,Fujian Academy of Agricultural Sciences,Fuzhou,Fujian 350019,China;State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China,Ministry of Agriculture/Fuzhou Branch,National Rice Improvement Center/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences&Technology/Base of South-China,National Key Laboratory of Hybrid Rice/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding/National Engineering Laboratory of Rice,Fuzhou,Fujian 350003,China)
出处 《福建农业学报》 CAS CSCD 北大核心 2019年第11期1237-1245,共9页 Fujian Journal of Agricultural Sciences
基金 国家重点研发计划项目(2016YFD0300508) 福建省科技计划公益类专项(2018R1021-5) 福建省财政专项——福建省农业科学院科技创新团队建设项目(STIT2017-1-1)
关键词 水稻 CIPK 基因家族 OsCIPK5 稻瘟病菌 QRT-PCR Rice CIPK Gene families OsCIPK5 M.grisea qRT-PCR
  • 相关文献

参考文献2

二级参考文献27

  • 1Zhaosheng Kong Wenying Xu Qun Li Yongbiao Xue.Identification, Expression and Functional Analysis of a Receptor-like Cytoplasmic Kinase, OsRLCK1, in Rice[J].Journal of Integrative Plant Biology,2007,49(6):898-907. 被引量:3
  • 2Chen S, Huang Z, Zeng L, Yang J, Liu Q, Zhu X. 2008. High- resolution mapping and gene prediction of Xanthomonas oryzae pv. oryzae resistance gene Xa7. Mol Breeding, 22(3): 433-441.
  • 3Guo Y, Hairier U, Ishitani M, Zhu J K. 2001. Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. Plant Cell, 13(6): 1383 1400.
  • 4Hrabak E M, Chan C W, Gribskov M, Harper J F, Choi J H Halford N, Kudla J, Luan S, Nimmo H G, Sussman M R Thomas M, Walker-Simmons K, Zhu J K, Harmon A C. 2003 The Arabidopsis CDPK-SnRK superfamily of protein kinases Plant Physiol, 132(2): 666-680.
  • 5Jeong J C, Shin D, Lee J, Kang C H, Baek D, Cho M J, Kim M C, Yun D J. 2007. Isolation and characterization of a novel calcium/ calmodulin-dependent protein kinase, AtCK, from Arabidopsis. Mol Cell, 24(2): 276-282.
  • 6Kauffman H E, Reddy A P K, Hsieh S P Y, Merca S D. 1973. An improved technique for evaluating resistance of rice varieties to Xanthomonas oryzae. Plant Dis Rep, 57: 737-741.
  • 7Kolukisaoglu U, Weinl S, Blazevic D, Batistic O, Kudla J. 2004. Calcium sensors and their interacting protein kinases: Genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiol, 134(1 ): 43 58.
  • 8Leclercq J, Ranty B, Sanchez-Ballesta M T, Li Z, Jones B, Jauneau A, Pech J C, Latche A, Ranjeva R, Bouzayen M. 2005. Molecular and biochemical characterization of LeCRKI, a ripening-associated tomato CDPK-related kinase. J Exp Bot, 56(409): 25-35.
  • 9Li L, Kim B G, Cheong Y H, Pandey G K, Luan S. 2006. A Ca^(2+) signaling pathway regulates a K^(+)channel for low-K response in Arabidopsis. Proc Natl Acad Sci USA, 103(33): 12625- 12630.
  • 10Luan S, Kudla J, Rodriguez-Concepcion M, Yalovsky S, Gruissem W. 2002. Calmodulins and calcineurin B-like proteins: Calcium sensors for specific signal response coupling in plants. Plant Cell, 14(Suppl): 389400.

共引文献31

同被引文献55

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部