期刊文献+

基于深度运动图和密集轨迹的行为识别算法 被引量:16

Human Action Recognition Based on Depth Motion Map and Dense Trajectory
下载PDF
导出
摘要 为了融合深度图中不易受光照等环境因素影响的深度信息和RGB视频序列中丰富的纹理信息,提出一种基于深度运动图(Depth Motion Maps,DMMs)和密集轨迹的人体行为识别算法。利用卷积神经网络训练DMMs数据并提取高层特征作为行为视频的静态特征表示,使用密集轨迹来描述RGB视频序列的动态运动信息,将行为视频的静态特征和动态特征串联,作为整个视频的行为特征表示并输入到线性支持向量机(Support Vector Machine,SVM)进行识别。实验结果表明,在公开的动作识别库UTD-MHAD和MSR Daily Activity 3D上,该算法能够有效提取深度信息和纹理信息,并取得了较好的识别效果。 A new human action recognition algorithm based on Depth Motion Maps(DMMs)and dense trajectory is proposed to fuse depth information of depth map sequences and rich texture information in RGB video sequences.It is not affected by environmental factors in depth map sequences easily including illumination.The Convolutional Neural Network(CNN)is utilized to train the DMM data and also extract the high-level features of the network as the static feature representation of the video.The dense trajectories are applied to describe the dynamic information of the RGB video sequences.Furthermore,the static and the dynamic features are connected to a series of the feature representation of the entire video which also is injected to the Support Vector Machine(SVM)for the video classification.The experimental results show that the algorithm can effectively extract depth information and texture information,achieve better recognition results on the public action recognition of library UTD-MHAD and MSR Daily Activity 3D.
作者 李元祥 谢林柏 LI Yuanxiang;XIE Linbo(Engineering Research Center of Internet of Things Applied Technology,Ministry of Education,School of IoT Engineering,Jiangnan University,Wuxi,Jiangsu 214122,China)
出处 《计算机工程与应用》 CSCD 北大核心 2020年第3期194-200,共7页 Computer Engineering and Applications
基金 教育部中国移动科研基金(No.MCM20170204)
关键词 人体行为识别 深度运动图 RGB 密集轨迹 VGG-16 human action recognition depth motion maps RGB dense trajectory VGG-16
  • 相关文献

参考文献3

二级参考文献20

  • 1李培华.一种改进的Mean Shift跟踪算法[J].自动化学报,2007,33(4):347-354. 被引量:53
  • 2Comaniciu D, Ramesh V, Meer P. Real-time tracking of non- rigid objects using mean shift [ C ]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington DC, USA : IEEE Press, 2000: 142-149.
  • 3Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking [J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25 (5): 564-577.
  • 4Shen C, Brooks M J, Hengel A. Fast global kernel density mode seeking: applications to localization and tracking [ J ]. IEEE Transactions on Image Processing, 2007, 16(5) : 1457-1469.
  • 5Zhao Q, Brennan S, Tao H. Differential EMD tracking [ C ]//Proceedings of IEEE Conference on Computer Vision. Washington DC, USA : IEEE Press, 2007: 1-8.
  • 6Han B, Comaniciu D, Zhu Y, et al. Sequential kernel density approximation and its application to real-time visual tracking [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(7): 1186-1197.
  • 7Li P. An adaptive binning color model for mean shift tracking [ J ]. IEEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(9) : 1293-1299.
  • 8Park M, Liu Y, Collins R. Efficient mean shift belief propagation for vision tracking [ C ]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington DC, USA: IEEE Press, 2008: 1-8.
  • 9Fan Z, Yang M, Wu Y. Muhiple collaborative kernel tracking [ J ]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2007, 29 (7) : 1268-1273.
  • 10Collins R T. Mean-shift blob tracking through scale space [ C ]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Madison. Washington DC, USA :IEEE Press,2003 : 234-240.

共引文献26

同被引文献140

引证文献16

二级引证文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部