期刊文献+

基于LDA符号表示的时间序列分类算法 被引量:6

TIME SERIES CLASSIFICATION BASED ON LDA SYMBOLIC REPRESENTATION
下载PDF
导出
摘要 近年来,基于符号表示的时间序列分类方法受到广泛关注,大部分现有方法对原始数据进行符号表示时,没有使用类别的标签信息。提出基于线性判别分析(LDA)的时间序列符号表示方法,考虑最大化类间区分度,使用LDA对原始数据集进行维数约减。再利用信息增益寻找降维后数据的符号投影区间,采用多重系数分箱(MCB)技术将维数约简后数据表示成符号序列。该方法在20个时间序列数据集上的分类效果好于已有方法,有监督的符号表示方法能有效提高分类性能。 In recent years,the time series classification method based on symbolic representation has received extensive attention.Most of the existing methods do not use the tag information of the category when they symbolize the original data.Based on the linear discriminant analysis(LDA),the symbol representation method of time series is proposed to maximize the inter-class discrimination.LDA was used to reduce the dimension of the original data set,and then information gain was used to find the symbol projection interval of the reduced dimension data.Using MCB technology to reduce dimension,the data was expressed as symbol sequence.Our method is better than the existing method in 20 time series data sets,and the supervised symbol representation method can effectively improve the classification performance.
作者 武天鸿 翁小清 单中南 Wu Tianhong;Weng Xiaoqing;Shan Zhongnan(College of Information Technology,Hebei University of Economics and Business,Shijiazhuang 050061,Hebei,China)
出处 《计算机应用与软件》 北大核心 2020年第2期259-265,307,共8页 Computer Applications and Software
关键词 时间序列分类 线性判别分析 符号表示 Time series classification Linear discriminant analysis Symbolic representation
  • 相关文献

参考文献4

二级参考文献32

  • 1姜远,周志华.基于词频分类器集成的文本分类方法[J].计算机研究与发展,2006,43(10):1681-1687. 被引量:22
  • 2Xing Zhengzheng, Pei Jian, YU P S, et al. Extracting inter- pretable features for early classification on time series [ C ]. SDM, 2011 : 247-258.
  • 3Xing Zhengzheng, Pei Jian, Dong Guozhu, et al. Mining Se- quence Classifiers for Early Prediction [ C ]. SDM, 2008 : 644- 655.
  • 4Xing Zhengzheng, Pei Jian, YU P S. Early classification on time series[J]. Knowledge and information systems, 2012, 31 (1): 105-127.
  • 5Xing Zhengzheng, Pei Jian, YU P S. Early prediction on time series: a nearest neighbor approach[ C]. IJCAI, 2009: 1297- 1302.
  • 6GHALWASH M F, OBRADOVIC Z. Early classification of multivariate temporal observations by extraction of interpretable shapelets[J]. BMC Bioinformatics, 2012, 13(1): 1-12.
  • 7He Guoliang,Duan Yong, Zhou Guofu, et al. Early classifica- tion on multivariate time series with core features [ C ]. Database and Expert Systems Applications. Springer International Pub- lishing, 2014: 410-422.
  • 8He Guoliang, Duan Yong, Peng Rong, et al. Early prediction on imbalanced multivariate time series [ C ]. Proceedings of the 22nd ACM International Conference on Conference on Informa- tion & Knowledge Management. ACM, 2013: 1889-1892.
  • 9HE G,DUAN Y, PENG R, et al. Early classification on multivari- ate time series[J]. Neurocomputing, 2014, 149(7): 777-787.
  • 10LIN Y F, CHEN H H, TSENG V S, et al. Reliable early elas- sification on multivariate time series with numerical and cate- gorical attributes [ A ]. Advances in Knowledge Diseovery and Data Mining. Springer International Publishing, 2015,9077 : 199-211.

共引文献37

同被引文献32

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部