期刊文献+

考虑能耗与负载因素的机器人仿生轨迹规划方法研究

Considering the Engergy Consunptionand Load Factorsof the Bionic Robot Trajectory Planning Methed Research
下载PDF
导出
摘要 提出一种基于仿生学理念的机器人运动轨迹规划方法。通过对人体上肢在举哑铃过程的分析以及对人体上肢进行运动学及动力学的模型建立,得到人体上肢的运动特征点信息。采用五次多项式插值法对轨迹进行规划研究并加入人体上肢手臂的运动特征点信息,最终确定考虑能耗及负载因素的仿生轨迹规划的基本方法。通过运动学、动力学分析及实验对比,确定最优轨迹。最后进行仿真和实验验证此仿人轨迹规划方法的正确性和优越性。 A robot trajectory planning method based on bionics concept is proposed. By analyzing the dumbbell lifting process of human upper limb and the kinematics and dynamics model of human upper limb,the motion characteristic points information of human upper limb is obtained. The five polynomial interpolation method is used to study the trajectory planning,and the motion characteristic points information of human upper limb and arm is added. Finally,the basic method of bionic trajectory planning considering energy consumption and load factors is determined. Through kinematics,dynamics analysis and experimental comparison,the optimal trajectory is determined. Finally,simulations and experiments are carried out to verify the correctness and advantages of the human simulated trajectory planning method.
作者 杨冬 李继强 董跃巍 沈永旺 YANG Dong;LI Ji-qiang;DONG Yue-wei;SHEN Yong-wang(Shool of Mechanical Engineering,Hebut University of Technology,Tianjin 300000,China)
出处 《机械设计与制造》 北大核心 2020年第1期233-236,共4页 Machinery Design & Manufacture
基金 “十二五”国家科技支撑计划项目“建筑板材机器人化施工装备与示范应用(2013BAF07B08)
关键词 机器人 仿生原理 轨迹规划 能耗及负载因素 Robot Bionics Concept Trajectoryplanning Energy Consumption and Load
  • 相关文献

参考文献3

二级参考文献21

  • 1李万莉,陈熙巍,茹兰.基于SimMechanics的4自由度机器人的轨迹规划和仿真系统设计[J].中国工程机械学报,2008,6(2):144-148. 被引量:14
  • 2CHOI Y K, PARK J H, KIM H S, et al. Optimal trajectory planning and sliding mode control for robots using evolution strategy[J]. Robotica, 2000, 18(8): 423-428.
  • 3LIN C S, CHANG P R, LUH J Y S. Formulation and optimization of cubic polynomial joint trajectories for industrial robots[J]. IEEE Trans. Automat. Contr., 1983, 28(12): 1 066-1 074.
  • 4GASPARETTO A, ZANOTTO V. A technique for time-jerk optimal planning of robot trajectories[J]. Robotics and Computer-Integrated Manufacturing, 2008, 24 (6): 415-426.
  • 5SHILLER Z. Time-energy optimal control of articulated systems with geometric path constraints[J]. Trans. ASME J. Dynam. Syst. Meas. Control, 1996, 118: 139-143.
  • 6SARAMAGO S F P, STEFFEN V J R. Optimization of the trajectory planning of robot manipulators taking into account the dynamics of the system[J]. Mech. Math. Theory, 1998, 33(7): 883-894.
  • 7SARAMAGO S F P, STEFFEN V J R. Optimal trajectory planning of robot manipulators in the presence of moving obstacles[J]. Mech. Math. Theory, 2000, 35(8): 1 079-1 094.
  • 8CHETTIBI T, LEHTIHET H E, HADDAD M, et al. Minimum cost trajectory planning for industrial robots[J]. European Journal of Mechanics A/Solids, 2004, 23(3): 703-715.
  • 9LUO X, FAN X P, ZHANG H, et al. Integrated optimization of trajectory planning for robot manipulators based on intensified evolutionary programming[C]//Proc. International Conference on Robotics and Biomimetics, Shenyang, China. Los Angeles: IEEE, 2004: 546-551.
  • 10PIAZZI A, VISIOLI A. Global minimum-time trajectory planning of mechanical manipulators using interval analysis[J]. Int. J. Control, 1998, 71(4): 631-652.

共引文献151

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部