期刊文献+

关于两个素数和一个素数k次幂的丢番图不等式

A Diophantine Inequality with Two Primes and One k-th Power of a Prime
下载PDF
导出
摘要 令■设λ1,λ2,λ3是不全同号的非零实数,且满足λ1/λ2为无理数,则对于任意实数η和ε> 0,不等式■有无穷多组素数解p1,p2,p3.该结果改进了Gambini,Languasco和Zaccagnini的结果. Let ■Suppose that λ1,λ2 and λ3 axe non-zero real numbers,not all of the same sign,satisfying that λ1/λ2 is irrational.Then for any real number η and ε> 0,the inequality ■has infinitely many solutions in prime variables p1,p2,p3.This result constitutes an improvement on that of Gambini,Languasco and Zaccagnini.
作者 朱立 ZHU Li(School of Mathematical Science,Tongji University,Shanghai 200092,China)
出处 《数学年刊(A辑)》 CSCD 北大核心 2019年第4期365-376,共12页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.11771333)的资助
关键词 素数 Davenport-Heilbronn方法 丢番图不等式 Prime Davenport-Heilbronn method Diophantine inequalities
  • 相关文献

参考文献1

二级参考文献8

  • 1Briidern J, Cook R J, Perelli A. The values of binary linear forms at prime arguments. In: Greaves G R H, Harman G, Huxley M N, eds. Sieve Methods, Exponential Sums, and Their Applications in Number Theory. London Math Soc Lecture Note Ser, 237. Cambridge: Cambridge Univ Press, 1997, 87-100.
  • 2Cai Y. A remark on the values of binary linear forms at prime arguments. Arch Math (Basel), 2011, 97(5): 431-441.
  • 3Cook R J, Harman G. The values of additive forms at prime arguments. Rocky Mountain J Math, 2006, 36(4): 1153-1164.
  • 4Davenport H, Heilbronn H. On indefinite quadratic forms in five variables. J Lond Math Soc, 1946, 21: 185-193.
  • 5Harman G. Diophantine approximation by prime numbers. J Lond Math Soc (2), 1991, 44(2): 218-226.
  • 6Lu W C. Exceptional set of Goldbach number. J Number Theory, 2010, 130(10): 2359-2392.
  • 7Matomaki K. Diophantine approximation by primes. Glasg Math J, 2010, 52(1): 87-106.
  • 8Montgomery H L, Vaughan R C. The exceptional set in Goldbach’s problem. Acta Arith, 1975, 27: 353-370.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部