摘要
令■设λ1,λ2,λ3是不全同号的非零实数,且满足λ1/λ2为无理数,则对于任意实数η和ε> 0,不等式■有无穷多组素数解p1,p2,p3.该结果改进了Gambini,Languasco和Zaccagnini的结果.
Let ■Suppose that λ1,λ2 and λ3 axe non-zero real numbers,not all of the same sign,satisfying that λ1/λ2 is irrational.Then for any real number η and ε> 0,the inequality ■has infinitely many solutions in prime variables p1,p2,p3.This result constitutes an improvement on that of Gambini,Languasco and Zaccagnini.
作者
朱立
ZHU Li(School of Mathematical Science,Tongji University,Shanghai 200092,China)
出处
《数学年刊(A辑)》
CSCD
北大核心
2019年第4期365-376,共12页
Chinese Annals of Mathematics
基金
国家自然科学基金(No.11771333)的资助