摘要
考虑在一般的三维无界区域中的具有滑移边界条件的带有阻尼的可压缩欧拉方程.当初始值接近平衡态时,获得了全局存在性和唯一性.同时,研究了在半空间情形下系统的衰减率.证明了经典解的L^2范数以(1+t)-3/4衰减到常值背景解.
In this paper,the authors consider the 3D damped compressible Euler equations in the general unbounded domain with slip boundary condition.The authors obtain the global existence and uniqueness when the initial data is near its equilibrium.Meanwhile,they also investigate the decay rates of the system in the half space.The authors show that the classical solution decays in the L^2-norm to the constant background state at the rate of (1+t)-(3/4).
作者
杨佳琦
袁萌
YANG Jiaqi;YUAN Meng(Key Laboratory for Mechanics in Fluid Solid Coupling Systems,Institute of Mechanics,Chinese Academy of Sciences,Beijing 100190,China;Department of Mathematics,Nanjing University,Nanjing 210093,China)
出处
《数学年刊(A辑)》
CSCD
北大核心
2019年第4期427-442,共16页
Chinese Annals of Mathematics
关键词
欧拉方程
阻尼
无界区域
Euler equations
Damping
Unbounded domain