期刊文献+

基于卷积神经网络的仓储物体检测算法研究 被引量:3

Research on Warehouse Object Detection Algorithm Based on Convolutional Neural Network
下载PDF
导出
摘要 针对仓储环境中物体检测公开数据集匮乏的问题,通过摄像机采集真实仓储环境中包含货物、托盘和叉车的大量图像进行标注,创建了一个仓储物体数据集.同时针对传统物体检测算法在仓储环境中检测准确率较低的问题,将基于卷积神经网络的DSOD应用于仓储环境中,通过在自己创建的仓储物体数据集上从零开始训练DSOD模型,实现了仓储物体的准确性检测.该算法的mAP达到了93.81%,比Faster R-CNN、SSD分别提高了0.04%、1.44%;并且模型大小仅有51.3 MB,比Faster R-CNN、SSD分别减小了184.5 MB、43.4 MB.实验结果表明,该算法获得了较为满意的仓储物体检测效果,其在仓储物体检测领域具有一定的实用价值. Considering the lack of public datasets for object detection based on the warehouse environment,a large number of images containing cargos,trays and forklifts in real warehouse environment are collected and labeled to build the warehouse object dataset. Meanwhile,aiming at the problem that the traditional object detection algorithm has lower detection accuracy in warehouse environment,the deeply supervised object detectors(DSOD)based on convolutional neural network is applied to the warehouse environment,and the DSOD model is trained from scratch on the self-built warehouse object dataset,and the accuracy detection of the warehouse object is realized. The mean Average Precision(mAP)of this algorithm reaches 93.81%,which is higher than that of Faster R-CNN and SSD by 0.04 and 1.44 points respectively,and the model size of this algorithm is only 51.3 MB,which is lower than that of Faster R-CNN and SSD by 184.5 MB and 43.4 MB respectively. The experimental results show that the algorithm has a relatively satisfying warehouse object detection effect,and it has certain practical values in the field of warehouse object detection.
作者 王飞 陈亮杰 王梨 王林 Wang Fei;Chen Liangjie;Wang Li;Wang Lin(College of Humanities&Sciences of Guizhou Minzu University,Guiyang 550025,China;College of Data Science and Information Engineering,Guizhou Minzu University,Guiyang 550025,China)
出处 《南京师范大学学报(工程技术版)》 CAS 2019年第4期99-105,共7页 Journal of Nanjing Normal University(Engineering and Technology Edition)
基金 贵州省教育厅创新群体重大研究项目(黔教合KY字[2018]018) 贵州省科技厅重点实验室(黔科合计Z字[2009]4002) 贵州民族大学人文科技学院基金科研项目(18rwjs016)
关键词 卷积神经网络 仓储环境 物体检测 DSOD convolutional neural network warehouse environment object detection deeply supervised object detectors(DSOD)
  • 相关文献

参考文献1

二级参考文献2

共引文献12

同被引文献30

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部