期刊文献+

基于NSGA-II算法最优组合的风电功率预测的研究 被引量:5

Research on Wind Power Prediction Based on Optimal Combination of NSGA-II Algorithm
下载PDF
导出
摘要 风电场的出力是一个受风速波动性和各种气象条件影响的复杂过程,风电功率预测的准确性可以大大提高电力系统调度运行的效率,维持发、输、用电之间功率的平衡。针对于此,对风电场进行功率预测时,建立了表征风电功率波动的平稳性指标,考虑到风电的波动性越小,预测精度就越高,引入了带精英策略的快速非支配排序遗传算法(NSGA-Ⅱ),以此来求取各个风力发电机组的最优组合,使得组合后的风电出力更加平稳,波动更小,得到了一组pareto最优解集。然后对pareto解集中的所有组合的风力发电机组,利用BP神经网络进行功率预测,预测精度最高的解就是最优的组合。通过仿真验证,证明该方法的有效性和合理性。并将所得到的结果与经典的风电功率预测方法—小波预测和粒子群优化的BP神经网络(PSOBP)预测进行对比分析,证明了所提方法的优越性。 The output of wind farm is a complex process affected by the fluctuation of wind speed and various meteorological conditions.The accuracy of wind power prediction can greatly improve the efficiency of power system dispatching and operation,and maintain the balance of power between power generation,transmission and consumption.In view of this,a stability index is established to characterize the fluctuation of wind power when predicting the power of wind farms.Considering that the smaller the fluctuation of wind power,the higher the prediction accuracy,a fast non-dominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ)with elite strategy is introduced to find the optimal combination of each wind turbine,so that the combined wind power output is more stable and the fluctuation is smaller,and a set of pareto optimal solution set is obtained.Then,the BP neural network is used to predict the power of all combined wind turbines in pareto solution set,and the solution with the highest prediction accuracy is the optimal combination.The validity and rationality of the method are proved by simulation,and the simulation results are compared with that of classical wind power prediction methods-wavelet prediction and PSOBP prediction,which proves the superiority of the proposed method.
作者 高红丽 魏霞 叶家豪 苏元鹏 GAO Hongli;WEI Xia;YE Jiahao;SU Yuanpeng(School of Electric Engineering,Xinjiang University,Urumqi 830047,Xinjiang,China;State Grid Urumqi Electric Power Supply Company,Urumqi 830000,Xinjiang,China)
出处 《水力发电》 北大核心 2020年第2期114-118,共5页 Water Power
基金 国家自然科学基金项目(51468062)
关键词 风力发电 风电功率预测 多目标优化 BP神经网络 wind power generation wind power prediction multi-objective optimization BP neural network
  • 相关文献

参考文献5

二级参考文献55

  • 1贺德馨.中国可再生能源发展战略研究丛书[M].北京:中国电力出版社.2008:91-100.
  • 2玄光男 程润伟.遗传算法与工程优化[M].北京:清华大学出版社,2004..
  • 3江铭炎,袁东风.人工鱼群算法及其应用[M].北京:科学出版社,2012.
  • 4S.S.Keerthi,C.-J.Lin.Asymptotic behaviors of support vector machines with Gaussian kernel[J].Neural Computation, 2003, 15(7): 1667-1689.
  • 5V. Vapnik. Statistical Learning Theory [ M ]. New York, USA : Wi- ley, 1998.
  • 6Vapnik V N. The Nature of Statistical Learning Theory [ M ]. New York: Springer-Verlag, 1995: 37-69.
  • 7ALBADI M H,EL-SAADANY E F.Comparative study on impacts of wind profiles on thermal units scheduling costs[J].Renewable Power Generation,IET,2011,5(1):26-35.
  • 8BLUDSZUWEIT H,DOMINGUEZ-NAVARRO J,LLOMBART A.Statistical analysis of wind power forecast error[J].IEEE Transactions on Power Systems,2008,3(23):83-991.
  • 9TEWARI S,GEYER C J,MOHAN N.A statistical model for wind power forecast error and its application to the estimation of penalties in liberalized markets[J].IEEE Transacitons on Power Systems,2011,26(4):2031-2039.
  • 10HODGE B,MILLIGAN M.Wind power forecasting error distributions over multiple timescales[C]//Power and Energy Society General Meeting,2011:24-29.

共引文献75

同被引文献46

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部