期刊文献+

改进PSO算法优化LSSVM的柴油机排气预测 被引量:5

Diesel Engine Exhaust Prediction Based on Improved PSO Algorithm Optimized LSSVM Model
下载PDF
导出
摘要 针对柴油机SCR系统对排气流量、排气成分和排气温度控制精度要求高的特点,提出一种基于粒子群优化支持向量机的排气预测模型。该方法采用改进粒子群算法寻找支持向量机最优的惩罚参数和核函数参数,提高模型的泛化能力,根据柴油机运行时的转速和负载,实时精准测算出排气流量、温度以及氮氧化合物浓度。结合柴油机实际排放实验仿真表明,与未经优化的PSO-SVM模型相比,该方法对柴油机排气预测有很高的精确度,可以将误差控制在1.6%以内,平均误差仅为0.665%。 In view of the high demand of SCR system of diesel engine on exhaust flow,exhaust composition and exhaust temperature accuracy,a kind of support vector machine exhaust prediction model based on particle swarm optimization is presented.In this method,the particle swarm algorithm is used to find the optimal penalty parameters and kernel function parameters of the support vector machine,which makes the model show better generalization ability,so as to accurately measure the flow rate,temperature and concentration of nitrogen and oxygen compounds in real time according to the rotating speed and load of the diesel engine.Combined with actual emissions from diesel engines,experimental simulation show that compared with the LSSVM model without optimization,this method has high accuracy in the prediction of diesel exhaust and can control the error within 1.6%and the average error is only 0.665%.
作者 张扬 朱志宇 ZHANG Yang;ZHU Zhiyu(Department of Electronic and Information,Jiangsu University of Science and Technology,Zhenjiang 212003,China)
出处 《重庆理工大学学报(自然科学)》 CAS 北大核心 2020年第1期103-110,共8页 Journal of Chongqing University of Technology:Natural Science
基金 江苏省研究生科研与实践创新计划项目(NO.KYCX18_2329)
关键词 排气预测 支持向量机 粒子群 优化 仿真 exhaust prediction support vector machine particle swarm optimization optimization simulation
  • 相关文献

参考文献6

二级参考文献48

  • 1康重庆,夏清,张伯明.电力系统负荷预测研究综述与发展方向的探讨[J].电力系统自动化,2004,28(17):1-11. 被引量:502
  • 2孔锐,张冰.一种快速支持向量机增量学习算法[J].控制与决策,2005,20(10):1129-1132. 被引量:31
  • 3王平,毛剑琴.支持向量机训练算法及其应用[J].信息与电子工程,2005,3(4):309-314. 被引量:9
  • 4黄勇,郑春颖,宋忠虎.多类支持向量机算法综述[J].计算技术与自动化,2005,24(4):61-63. 被引量:33
  • 5徐文龙,姚立红,潘理,倪佑生.基于TSVM的网络入侵检测研究[J].计算机工程,2006,32(18):138-140. 被引量:5
  • 6Kennedy J,Eberhart R. Particle swarm optimization[C] //Proc of IEEE Int Conf on Neural Networks. Perth, Australia: IEEE Press, 1995:1942-1948.
  • 7Eberhart R, Kenney J. A new optimizer using particle swarm theory[C] // Proc of the Sixth International Symposium on Micro Machine and Human Science. Nagoya, Japan: IEEE Press, 1995:39-43.
  • 8Vapnik V N. The nature of statitiseal learning theory [M]. New York: Spring-Verlag Press, 1995.
  • 9Bai Jing, Guo Yueling, Zhang Xueying. Speech recognition based on a compound kernel support vector machine [, C] // Proceedings of the 11th International Conference on Communication Technologies 2008 (ICCT2008). [S. l. ] : IEEE,2008 : 696 - 699.
  • 10Kuncheva L. Clustering-and-selection model for classifier combination[C] // Proceedings of the 4th International Conference on Knowledge-based Intelligent Engineering Systems (KES'2000). Brighton, UK : [s. n. ], 2000: 1275 - 1280.

共引文献212

同被引文献64

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部