摘要
借阅行为是教育大数据驱动的教育教学变革的关键研究对象,在数据驱动的图书馆集成系统借阅流程优化中具有重要的研究价值和实践意义。文章运用学习分析方法对学生的借阅行为进行跟踪,通过分析某高校图书馆的借阅数据,剖析学习、阅读、兴趣引导以及图书管理中存在的问题,并建议改进现有借阅模式、实现动态的读者兴趣挖掘和引导机制、构建启发式图书借阅业务模型。研究表明,数据分析准确完备,流程描述专业规范,可为大数据学习分析算法驱动的图书馆集成系统的改进提供理论支持和应用依据。
Lending behavior is the key research object of education and teaching reform driven by big data in education.It has important research value and practical significance in the optimization of lending process of data-driven library integrated system.The paper uses learning analytics method to track students’lending behaviors,analyzes the problems existing in learning,reading,interest guidance and library management by analyzing the borrowing data of a university library,and proposes to improve the existing borrowing modes,implement the dynamic mining and guiding mechanism of readers’interest,and constructs the heuristic book lending logic.The research shows that the accurate and complete data analysis,as well as the professional and normative process description can provide theoretical support and application basis for the improvement of library integrated system driven by learning analytics algorithm of big data.
作者
夏小娜
戚万学
Xia Xiao-na;Qi Wan-xue
出处
《图书馆理论与实践》
CSSCI
2020年第1期57-64,共8页
Library Theory and Practice
基金
2019年山东省社会科学规划研究项目“大数据支撑的教育决策平台架构”(项目编号:19CZKJ08)
2018年山东省研究生教育优质课程“高级软件工程”(项目编号:SDYKC18079)
2016年山东省自然科学基金面上项目“社会化服务推荐的决策机制研究与应用”(项目编号:ZR2016FM45)的研究成果之一
关键词
借阅行为
学习行为
学习偏好
兴趣引导
启发式借阅流程
Lending Behavior
Learning Behavior
Learning Preference
Interest Guidance
Heuristic Lending Process