期刊文献+

基于时间交互偏置影响传播模型的弱连接重叠社区检测 被引量:1

Weak Tie Overlapping Community Detection Based on Time Interaction Bias Influence Propagation Model
下载PDF
导出
摘要 为提高弱连接重叠社区的检测识别性能,提出一种基于时间交互偏置影响传播模型的弱连接重叠社区检测算法。设计针对社区检测图模型分割的目标函数,利用群落结构对处理器负载均衡进行优化,以提高模型求解的效率。基于邻域边缘密度对近似活跃边缘进行重新定义,构建一种影响传播模型以确定用户具有高频率的相互作用,从而提高弱连接用户的识别性能。在此基础上,提出时间交互偏置社区检测方法。实验结果表明,该方法对重叠社区进行检测时具有较高的识别精度和效率。 In order to improve the detection and recognition performance of weak tie overlapping communities,this paper proposes a community detection method based on time interaction bias influence propagation model.The target function for the model segmentation of community detection graph is designed and the load balance of the processor is optimized by applying community structure,so as to improve the solution efficiency of the model.Based on the neighborhood edge density,the approximate active edge is redefined and an influence propagation model is established,which can confirm that the users have high interaction frequency and have strong recognition performance for weak tie users.On this basis,a time interaction bias community detection method based on overlapping community detection is proposed.Experimental results show that the proposed method has high recognition accuracy and efficiency when conducting detection on overlapping communities.
作者 许小媛 黄黎 李海波 XU Xiaoyuan;HUANG Li;LI Haibo(School of Information Mechanical and Electrical Engineering,Jiangsu Open University,Nanjing 210017,China;College of Computer Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China)
出处 《计算机工程》 CAS CSCD 北大核心 2020年第2期72-79,共8页 Computer Engineering
基金 江苏省高校自然科学基金(18KJB520008,19KJB520026) 江苏省教育科学“十三五”规划2016年度青年专项课题(C-b/2016/03/25)
关键词 时间交互偏置 影响传播 弱连接 重叠社区 近似活跃边缘 Time Interaction Bias(TIB) influence propagation weak tie overlapping communities approximate active edge
  • 相关文献

参考文献6

二级参考文献46

  • 1胡良梅,高隽,何柯峰.图像融合质量评价方法的研究[J].电子学报,2004,32(F12):218-221. 被引量:100
  • 2ITTI L, KOCH C, and NIEBUR E. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254-1259.
  • 3YANG J and YANG M H. Top-down visual saliency via joint CRF and dictionary learning[C]. IEEE Conference on Computer Vision and Pattern Recognition, Providence, 2012: 2296-2303.
  • 4TONG N, LU H, RUAN X, et al. Salient object detection via bootstrap learning[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, 2015: 1884-1892.
  • 5JIANG H. Weakly supervised learning for salient object detection using background images[OL]. http://arxiv.org/ pdf/1501.07492.pdf , 2015.
  • 6ZHAO R, OUYANG W, LI H, et al. Saliency detection by multi-context deep learning[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, 2015: 1265-1274.
  • 7YAN Q, XU L, SHI J, et al. Hierarchical saliency detection [C]. IEEE Conference on Computer Vision and Pattern Recognition, Portland, 2013: 1155-1162.
  • 8ZHU W, LIANG S, WEI Y, et al. Saliency optimization from robust background detection[C]. IEEE International Conference on Computer Vision and Pattern Recognition, Columbus, 2014: 2814-2821.
  • 9YANG C, ZHANG L, LU H, et al. Saliency detection via graph-based manifold ranking[C]. IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 3166-3173.
  • 10TONG N, LU H, ZHANG Y, et al. Salient object detection via global and local cues[J]. Pattern Recognition, 2015, 48(10): 3258-3267.

共引文献37

同被引文献17

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部