期刊文献+

深度置信网络优化模型在人才评价中的应用 被引量:4

Application of Optimized Deep Belief Network Model in Talent Evaluation
下载PDF
导出
摘要 针对深度置信网络(DBN)权值随机初始化容易使网络陷入局部最优的问题,引入改进的和声搜索(IHS)算法,提出基于IHS的DBN模型(IHS-DBN)。在和声搜索算法的基础上,利用全局自适应的和声音调调整方式,提升算法收敛速度和后期局部搜索能力。将DBN重构误差函数作为IHS算法的优化目标函数,通过不断迭代优化解向量为DBN寻找一组较优的初始权值进行网络训练,并在MNIST数据集上验证IHS-DBN模型的有效性。IHS-DBN模型在高校人才评价中的应用结果表明,与DBN、SVM和BP神经网络评价模型相比,IHS-DBN模型的评价准确率分别提高3.6%、7.3%和16.4%。 Traditional Deep Belief Networks(DBN)are often limited within local optimum due to the random initialization of weights.To address the problem,this paper introduces an improved Improved Harmony Search(IHS)algorithm into traditional DBN to construct an IHS-based DBN model,called IHS-DBN.Firstly,to improve the convergence speed and local search ability of the Harmony Search(HS)algorithm,the globally adaptive method of adjusting harmony tone is used.Secondly,the reconstruction error function of DBN is taken as the optimization objective function of the IHS algorithm.Then the solution vector is iteratively optimized to find a set of more optimal initial weights for DBN training.The proposed model is tested on the MNIST dataset for talent evaluation in colleges to verify its effectiveness.Results show that the accuracy of the HIS-DBN model is improved by 3.6%,7.3%and 16.4%respectively compared with DBN,SVM and BP neural network evaluation models.
作者 李娜娜 胡坚剑 顾军华 张亚娟 LI Nana;HU Jianjian;GU Junhua;ZHANG Yajuan(School of Artificial Intelligence and Data Science,Hebei University of Technology,Tianjin 300401,China;Key Laboratory of Big Data Computation of Hebei Province,Tianjin 300401,China)
出处 《计算机工程》 CAS CSCD 北大核心 2020年第2期80-87,102,共9页 Computer Engineering
基金 河北省人力资源和社会保障课题(JRSHZ-2019-02014)
关键词 深度置信网络 随机初始化 和声搜索算法 音调调整 人才评价 Deep Belief Network(DBN) random initialization Harmony Search(HS)algorithm tone adjustment talent evaluation
  • 相关文献

参考文献7

二级参考文献122

  • 1李光红,杨晨.高层次人才评价指标体系研究[J].科技进步与对策,2007,24(4):186-189. 被引量:70
  • 2马士成.企业"双高"科研人才评价机制研究[D].北京:中国矿业大学,2009.
  • 3赵伟,包献华,屈宝强,等.创新型科技人才分类价指标体系构建[J].科技进步与对策,2012,24:1-5.
  • 4Bertin-Mahieux T, Ellis D P W, Whitman B, et al. The million song dataset [C] //Proc of the 12th Int Society for Music Information Retrieval (ISMIR 2011 ). Miami, FL: University of Miami, 2011:591-596.
  • 5Tzanetakis G, Cook P. Musical genre classification of audio signals [J]. IEEE trans on Speech and Audio Processing, 2002, 10(5): 293-302.
  • 6Downie J S, Ehmann A F, Bay M, et al. The music information retrieval evaluation exchange: Some observations and insights [G] //Advances in Music Information Retrieval. Berlin: Springer, 2010:93-115.
  • 7Deng J D, Simmermacher V, Cranefield S. A study on feature analysis for musical instrument classification [J]. IEEE Trans on Systems, Man, and Cybernetics, Part B: Cybernetics, 2008, 38(2): 429-438.
  • 8Little D, Pardo B. Learning musical instruments from mixtures of audio with weak labels [C] //Proe of the 9th Int Conf on Music Information Retrieval (ISMIR 2008 ). Philadelphia PA; Drexel University, 2008: 127-132.
  • 9Song Yading, Dixon S, Pearce M. Evaluation of musical features for emotion classification [C] //Proc of the 13th Int Conf on Music Information Retrieval (ISMIR 2012). Porto, Portugal: FEUP Edicoes, 2012:523-528.
  • 10Liu Y W, Selfridge-Field E. Modeling music as markov chains: Composer identification [EB/OL]. ( 2002-06-11 ) [2014-04-30]. http://esf, ccarh, org/254/254_LiteraturePackl/ ComposerID_Liu. pdf.

共引文献73

同被引文献39

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部